太阳能光催化分解水制氢以其系统简单、成本低廉的优势,成为解决当前能源与环境问题、实现“双碳”目标的理想途径之一。然而,传统研究多聚焦于光催化材料本身,对反应界面(涉及气、液、固三相)能量和物质传输转换机制缺乏系统的跨尺度考量,致使整体光−氢转化效率长期处于较低水平。研究从能质传输与转化的角度出发,概述了光催化分解水制氢的基本原理和过程,并深入探讨了非稳态光吸收吸收与能量转化、缓慢的传质过程(特别是反应界面气泡成核、生长和脱附过程)以及极端地区水资源匮乏等瓶颈问题。针对这些挑战,提出了若干突破途径。首先,重点介绍了一种太阳能聚光−光热耦合反应系统,通过聚光技术实现光热协同,显著提高了太阳能的宽光谱利用率以及载流子的反应势能和转化效率。其次,详细论述了基于光热基底构建全新的液−固/气−固解耦型反应体系的理论和方法,有效克服三相体系中因气泡生成造成的传质限制。再次,阐述了利用太阳能分频技术和气固界面构建,实现空气集水与光催化分解水耦合制氢的策略,以应对水资源受限问题。最后,从工程化角度强调了系统设计及其规模示范的深远影响和重要意义,并对这一领域未来的研究方向提出了展望。