煤化学链燃烧技术可有效实现CO2的捕集封存,对我国实现双碳目标具有重要意义。煤化学燃烧过程中产生的汞污染因其对人体的剧毒性以及对铝制CO2压缩设备的腐蚀性而亟需有效解决。为了推动煤化学链燃烧汞污染的有效治理,总结了气化介质、气化产物、载氧体和反应温度对煤化学链燃烧过程中汞释放、转化及迁移的影响及机理,并针对存在的问题提出发展建议。CO2不能直接将Hg0均相氧化,但会抑制HCl对载氧体脱汞的促进作用。H2O(g)不仅会通过促进煤中挥发分的析出、抑制孔结构的熔融以及提高煤燃烧效率来增强Hg的释放,还会与Hg反应生成Hg(OH)2继而分解成HgO和Hg0,并抑制HCl向Cl的转化而抑制Hg0向Hg2+的氧化。CO、H2和NH3等强还原性气化产物会通过消耗载氧体表面氧而抑制Hg0的氧化。H2S会与载氧体表面活性氧反应生成表面活性硫而促进载氧体对Hg0的脱除,但H2S浓度过高则会在载氧体表面生成对Hg0氧化并不活跃的环状硫或链状硫而抑制H2S的促进作用。HCl会增强载氧体的脱汞效果,其在低温段(80~280 ℃)的促进作用归因于HCl预吸附的Eley-Rideal机理,在中温段(280~580 ℃)的促进作用归因于Langmuir-Hinshelwood机理,在高温段(>580 ℃)的促进作用主要归因于HCl对Hg0的均相氧化。载氧体对Hg0氧化的促进作用主要归因于载氧体表面活性氧对Hg0的直接氧化、载氧体将H2S氧化成活性S以及将HCl氧化成活性Cl和Cl2。燃料反应器温度升高会增强煤中Hg的释放,但也可通过促进Cl的生成和抑制CO的生成促进Hg0氧化。空气反应器温度升高,不仅有利于空气反应器中Hg0的氧化,还会通过增强煤的充分燃烧以及减弱焦炭对Hg的吸附作用而抑制Hg0从空气反应器出口逸出。鉴于H2O(g)含量对气化速率、Hg释放及Hg0氧化的影响,提出确定合适的H2O(g)含量以实现增强气化速率、减少Hg释放以及促进Hg0氧化协同效应。鉴于载氧体在实现氧高效传递和增强燃料反应器内Hg0氧化的协同效应,提出确定合适的载氧体以实现载氧体在氧传递和Hg0氧化的一体两用。鉴于燃料反应器温度对煤中Hg释放和Hg0氧化的影响,提出确定合适的燃料反应器温度以尽可能减少煤中Hg在燃料反应器内的释放以及增强Hg0的氧化,从而利于CO2富集提纯。鉴于空气反应器温度对Hg0氧化的影响,提出确定合适的燃料反应器温度以尽可能增强空气反应器中Hg0的氧化,从而减少Hg从空气反应器出口逸出。