大型炉膛内三维燃烧场与炉内燃烧过程的安全性、经济性和污染物排放水平密切相关。相对于其他大型炉膛内三维温度场可视化监测技术(声学层析成像法和吸收光谱层析成像法),热辐射成像法具有系统紧凑、易于实施等特点,且时间分辨率和空间分辨率较高,具有较大的应用潜力。介绍了大型炉膛内热辐射成像原理;分析了辐射传递反问题的不适定性;综述了辐射传递反问题求解方法研究进展。构建大型炉膛内热辐射成像模型即利用热辐射成像矩阵,将炉膛边界传感器接收的辐射能量分布与炉内温度场、介质和壁面辐射特性联系起来;计算热辐射成像矩阵的关键在于获得介质和壁面单元散射或反射份额的分布,目前通常使用DRESOR法、逆向蒙特卡洛法等进行求解。通过热辐射成像矩阵的条件数判定可知,热辐射传递反问题是不适定性的,导致解的不唯一性甚至不存在性,以及微小测量误差会引起温度场重建的不稳定。目前求解该类不适定问题,主要有优化方法和正则化方法2类。优化方法可分为传统优化方法和智能优化方法。传统优化方法基于梯度计算,通过反复迭代计算减小目标函数,常见有最小二乘法、共轭梯度法等;但该类方法对初值依赖大,需要对目标函数求导数且无法获得全局最优解。智能优化方法基于概率搜索,由相应算法设定随机解,并在求解空间中寻找最优解,特点是无须已知优化问题的精确数学模型,也无需求解目标函数的梯度。可根据对象数量,分为基于生物群体模拟和基于生物个体模拟。前者包括微粒群算法、遗传算法等,需要构建目标函数且搜寻最优解的耗时较长;后者包括人工神经网络、支持向量机等,无需获知预测问题的数学映射关系,经过训练即可获得最接近实际输出值的结果,但训练数据集的质量是影响预测精度关键因素之一。另外一类常见的处理不适定问题的方法是正则化方法,利用与原不适定问题毗邻的一系列适定问题的解近似代替原问题的解,包括吉洪诺夫正则化、截断奇异值分解等。该方法已用于多种燃煤机组锅炉内的三维温度场重建,具有较高的重建精度和效率。尽管热辐射成像法重建炉内三维温度场时需要考虑光学厚度等影响因素,但在一定适用范围内,能够较好地再现炉内真实温度场的分布特征。并且从三维空间考虑辐射传递方程,本质就是一种三维检测技术。随着成像技术的发展(光场相机、多/高光谱成像仪等),也为热辐射成像法用于大型炉膛内三维温度场重建指明了新的发展方向。