论述了二噁英和重金属的污染及形成过程,对比分析了焚烧过程中二噁英和重金属的控制技术和焚烧后的飞灰处置技术。垃圾焚烧过程中二噁英和重金属的控制技术主要包括燃烧前垃圾的分类分选及预处理;燃烧中的促进垃圾完全燃烧或添加二噁英生成抑制剂都能减少二噁英的生成;燃烧后的烟气急冷技术能避免二噁英再次生成,通过烟气净化技术降低烟气中二噁英和重金属的排放浓度,使烟气达标排放,并将烟气中的二噁英和重金属转移到飞灰中,对二噁英和重金属的最终处置主要针对飞灰进行。目前飞灰处置技术主要分为固化稳定化+填埋、分离提取、飞灰的资源化利用。固化稳定化+填埋技术成熟、操作简单、处置成本相对较低,其中化学药剂稳定化+填埋是我国飞灰处置的主要手段之一,但该技术存在二噁英和重金属的长期稳定性不足等问题,且填埋会占据大量土地资源,主要用作飞灰暂存技术。分离/提取飞灰中重金属和氯盐可以实现飞灰资源化利用,但垃圾中重金属和可溶盐的成分及含量、投资成本高及后续废水的处理难度大等问题制约了分离/萃取技术的应用,目前并未实现大规模工业化应用。通过水洗也可去除飞灰中部分重金属和大量氯盐,常用作飞灰的预处理,促进后续对飞灰的资源化利用。飞灰资源化利用的关键在于重金属的长期稳定性和二噁英的彻底降解,并达到相关产品的性能要求,实现飞灰的资源化利用。飞灰高温处置技术可有效固定重金属、彻底分解二噁英,是最具前景的飞灰处置技术之一,但由于飞灰高温处置技术投资及运行成本高、能量消耗大,且我国高温处置技术相对落后,该技术并未实现大规模应用。水泥窑协同处置技术通过高温固化直接实现飞灰的资源化利用,并不会额外消耗更多的能量,该技术已成为我国除化学稳定化+填埋外最主要的飞灰处置方式。水热法和机械化学法相对于高温处置能耗较低,具有很好的发展前景,目前还处于试验研究阶段。