Chinese Science Citation Database Core Library(CSCD)Source Journals
Chinese Core Journals
Chinese Core Science and Technology Journals
RCCSE China Authoritative Academic Journal(A+)
Dutch Digest and Citation Database (Scopus)

Modeling of nitrogen oxide emission in circulating fluidized bed for deep peak regulation

2023 No. 06
446
300
OnlineView
Download
Authors:
GAO Mingming
GUO Jiongnan
YU Haoyang
WANG Yake
YUE Guangxi
Unit:
School of Control and Computer Engineering,North China Electric Power University
Huaneng RenewablesCo.,Ltd.,
Department of Energy and Power Engineering
Abstract:

In order to respond to the green environmental protection spirit of the 19th National Congress of the Communist Party of China and meet the ultra-low emission requirements of circulating fluidized bed units, it is of great significance to establish an accurate NOx emission concentration mechanism control model for the design of denitrification automatic control method of circulating fluidized bed units. Based on the combustion mechanism of circulating fluidized bed boiler, the model of immediate combustion carbon was established, and the fuel nitrogen was divided into volatile nitrogen and immediate combustion carbon nitrogen to construct the self-generation model of NOx in the furnace. The NOx self-reduction model was derived by considering the reduction effect of CO and immediate combustion carbon on NOx. A selective non-catalytic reduction denitrification model was constructed, and a circulating fluidized bed nitrogen oxide emission model suitable for deep peak shaving was established based on the above models. The relationship between operating parameters and NOx emission concentration under deep peak regulation and the influencing factors of selective non-catalytic reduction denitrification efficiency were explored. The simulation verification test shows that the established circulating fluidized bed NOx model has achieved good simulation results. The average prediction time of the model calculation value under steady-state conditions is 114 s, and the average relative error with the measured value is 2.50%. The average prediction time of the model under deep peak shaving is 126 s, and the average relative error between the calculated value and the measured value is 5.42%. The calculation of the model is 2 - 3 minutes earlier than the actual measurement, which has a certain prediction effect.The designed NOx emission concentration model in this paper can provide a reference for the future research of circulating fluidized bed units to adapt to deep peak regulation, rapid load change and ultra-low emission.

Keywords:
circulating fluid bed
nitrogen oxide emissions
deep peak regulation
mechanism model
ultra-low emission
Citation format:
高明明(1979—),男,山西吕梁人,副教授,博士。E-mail:gmm1@ncepu.edu.cn
通讯作者:郭炯楠(1999—),男,山西吕梁人,硕士研究生。E-mail:1326196342@qq.com
Chart:
Articles:
--
Citation format:
GAO Mingming,GUO Jiongnan,YU Haoyang,et al.Modeling of nitrogen oxide emission in circulating fluidized bed for deep peak regulation[J].Clean Coal Technology,2023,29(6):24-31.

About Journal

  • Executive director

    China Coal Science and Industry Group Co., Ltd

  • Sponsored by

    Coal Science Research Institute Co., Ltd
    Coal Industry Clean Coal Engineering
    Technology Research Center

  • Editor in Chief

    XIE Qiang

  • Vice Editor-in-Chief

    YU Chang
    SHI Yixiang
    ZHAO Yongchun
    DUAN Linbo
    CAO Jingpei
    ZENG Jie

  • Publication Frequencies

    Monthly

  • ISSN

    1006-6772

  • CN

    11-3676/TD

Covered by

  • CSTPCD
  • RCCSE(A+)
  • AJ
  • EBSCO host
  • Ulrichsweb
  • JST
  • Scopus

Contact us

New Media

  • Meichuanmei
    Meichuanmei
  • Clean Coal Technology
    Clean Coal Technology
  • Online Journals
    Online Journals
Website Copyright © {year} Clean Coal Technology
京ICP备05086979号-19
地址:Coal Tower, Hepingli, Chaoyang District, Beijing, China.
邮编:100013
Tel:86-10-87986452 / 010-87986451
E-mail:jjmjs@263.net