Coal-biomass co-firing power generation(CBCP) can reduce CO2 emissions and alleviate air pollution. Considering the low energy density of straw resources,the application potential of coal-fired coupled biomass power generation technology largely depends on the spatial matching between coal-fired power plants and straw resources. Therefore,from the perspective of spatial analysis,it is of great significance to study the potential of coal-fired coupled biomass power generation. The possible potential of coal-fired coupled power generation was evaluated by spatial matching method based on high-resolution coal-fired power plants and straw resource data. The research results show that coal-fired power plants are highly spatial matched with straw resources in China,with about 89% of the collectible straw located within a 100 km radius of coal-fired power plants. The amount of co-fired straw in coal-fired power plants is affected by the energy utilization ratio of straw and the co-firing level of straw in power plants. The higher the energy utilization of straw is and the higher the co-firing level in power plants is,the more straw is that can be co-firing in coal-fired power plants. Under the scenario of the high energy utilization rate of straw and 30% co-firing level,1 066 power plants can find straw resources within a radius of 100 km,of which 52.6% of power plants can meet the 30% co-firing level. In this scenario,the power plant can absorb 384 million ton of straw and reduce CO2 by about 511 million ton. The results can provide technical support for the formulation of technical support policies for coal-biomass co-firing power generation and straw resource utilization policies in China.