Chinese Science Citation Database Core Library(CSCD)Source Journals
Chinese Core Journals
Chinese Core Science and Technology Journals
RCCSE China Authoritative Academic Journal(A+)
Dutch Digest and Citation Database (Scopus)

Performance and mechanism of low-concentration CH4 catalytic combustion based on composite oxides of Cu-Ce

2022 No. 01
314
799
OnlineView
Download
Authors:
ZHANG Chenhang
DOU Baojuan
TENG Zihao
WU Liangkai
HAO Qinglan
BIN Feng
Unit:
College of Marine and Environmental Sciences, Tianjin University of Science & Technology;State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences
Abstract:

A large quantity of CH4 is discharged from exhaust gas in China every year, which causes serious environmental pollution of atmosphere. Catalytic combustion is considered as one of the most effective ways to remove methane due to its low operating temperature and high efficiency. Herein, three catalysts, CuO-CeO2, CuO and CeO2, were prepared by sol-gel method to investigate the catalytic combustion activity of CH4 under (1% CH4, 78% N2 and 21% O2) atmosphere. The physical structure and surface properties were characterized using XRD, XPS, H2-TPR and O2-TPD techniques, etc. The results show that Ce ions not only promote the dispersion of Cu on the catalyst surface, but also the conversion between trivalent (Ce3+) and tetravalent (Ce4+) improves the oxygen storage and release capacity of the catalyst, which is beneficial for CuO-CeO2 to improve the catalyst activity. The evaluation of catalyst activity provides evidence that the activity order of the three catalysts follows the order CuO-CeO2>CuO>CeO2. Then, the most active CuO-CeO2 catalyst is employed to further investigate kinetic partial pressure experiment and reaction mechanism to determine the reaction rate of methane at different oxygen/methane partial pressure ratios. The results indicate that the reaction follows the L-H mechanism, that is, the adsorbed CH4 reacts with the adsorbed O2. Based on in-situ infrared spectra analysis, the microscopic reaction mechanism of CH4 over CuO-CeO2 catalyst is proposed: CH4 is firstly adsorbed on the surface of CuO-CeO2 and then reacts with CuO-CeO2 to produce intermediate products methoxy substance (Cu-OCH3) and formate substance (Cu-OOCH). Finally, the intermediate products are decomposed into CO2 and H2O to achieve the purpose of the complete oxidation. 

Keywords:
CH4 catalytic combustion
Cu-Ce catalyst
reactant partial pressure
reaction dynamics
micro-mechanism
Citation format:
张晨航(1998—),男,陕西宝鸡人,硕士研究生。E-mail:13772647737@163.com。
通讯作者:豆宝娟(1982—),女,山东临沂人,副教授,博士。E-mail:bjdou@tust.edu.cn
Chart:
Articles:
--
Citation format:
--

About Journal

  • Executive director

    China Coal Science and Industry Group Co., Ltd

  • Sponsored by

    Coal Science Research Institute Co., Ltd
    Coal Industry Clean Coal Engineering
    Technology Research Center

  • Editor in Chief

    XIE Qiang

  • Vice Editor-in-Chief

    YU Chang
    SHI Yixiang
    ZHAO Yongchun
    DUAN Linbo
    CAO Jingpei
    ZENG Jie

  • Publication Frequencies

    Monthly

  • ISSN

    1006-6772

  • CN

    11-3676/TD

Covered by

  • CSTPCD
  • RCCSE(A+)
  • AJ
  • EBSCO host
  • Ulrichsweb
  • JST
  • Scopus

Contact us

New Media

  • Meichuanmei
    Meichuanmei
  • Clean Coal Technology
    Clean Coal Technology
  • Online Journals
    Online Journals
Website Copyright © {year} Clean Coal Technology
京ICP备05086979号-19
地址:Coal Tower, Hepingli, Chaoyang District, Beijing, China.
邮编:100013
Tel:86-10-87986452 / 010-87986451
E-mail:jjmjs@263.net