Torrefaction is a promising pretreatment means for kitchen waste upgrading, which can significantly improve the quality of subsequent gasification syngas, but its economic feasibility is yet to be evaluated. Based on this,a process of hydrogen production from kitchenwaste by steam gasification integrated with torrefaction (TG) was proposed in this study, compared to hydrogen production from food wasteby steam direct gasification (DG), and thermodynamic and techno-economic assessments were fully conducted to assess the feasibility ofthe two processes. The effects of gasification temperature and steam to carbon ratio (η) on the hydrogen production capacity of two processes were investigated by using Aspen Plus. It is found that the hydrogen capacity of DG and TG is improved by increasing the temperatureand η, and the optimal operating parameters are observed at temperature of 950 ℃ and η of 1.5-2.0. Based on the simulation results,a comprehensive evaluation of the hydrogen production process was conducted by analysing exergy efficiency and economic benefits to explore the feasibility of the process at a plant size of 55 000 wet tonnes/ year with 55% water content. The energy and exergy results showthat the introduction of torrefaction pretreatment results in an increase of 813.2 kW in total exergy loss, accounting for 10.5% of the overallprocess. The exergy efficiency of the DG is 56.7%. The exergy efficiency of TG is 2.8% higher than that of the DG. The economic analysisis suggested the total equipment cost is $5.12 million, the total annual production cost is $2.97 million and the minimum hydrogen sellingprice (MHSP) is $2.94/ kg, while MHSP of DG is 9.5% higher. Therefore, TG has more advantages than DG in terms of thermal efficiency and economic cost.