With the gradual maturity of hydrogen production from new energy generation, the cost of hydrogen production directly affects the commercialization and application of hydrogen energy industry. Based on the changes of input and operating cost of water electrolysis hydrogen production technology, a dynamic cost calculation model was constructed for four combined schemes of electrolytic water hydrogen production, including alkaline water electrolysis cell (ALK) + wind power, proton exchange membrane water electrolysis cell (PEM) + wind power, alkaline water electrolysis cell (ALK) + photovoltaic (PV) power and proton exchange membrane water electrolysis cell (PEM) + photovoltaic (PV) power, from the respective of new energy generation cost. And the impact of relevant factors on the cost of hydrogen production was studied through sensitivity analysis. The results show that the cost of hydrogen production of four combination schemes reduces by 13.95%, 29.22%, 19.55% and 31.03%, respectively, during the research period (2017—2020), and the cost of hydrogen production in 2020 is 17.90, 28.27, 21.54 and 32.23 yuan/kg, respectively. Power consumption and power generation cost are the most potential factors to reduce the cost of hydrogen production in the four schemes. Through the comparative analysis of the economy of different hydrogen production technologies such as other power sources and traditional petrochemical energy, it is found that in different hydrogen production scenarios, the hydrogen production technologies from low to high cost are hydrogen production from coal, industrial by-product, natural gas, coal + Carbon Capture and Storage (CCS), ALK wind power, methanol, ALK PV, ALK valley electricity, PEM PV and PEM valley electricity.