As the rapid development of renewable energy puts forward higher requirements for deep peak regulation of thermal power units,the variable load regulation performance of thermal power units has become one of the important factors affecting the economic benefits of thermal power plants. Based on the review of the development of rapid variable load methods,various fast variable load methods on the working medium side were systematically summarized,including condensate throttling technology,feed water bypass regulation technology,heating extraction regulation technology,regenerative steam extraction regulation technology,back pressure regulation technology,advance energy balance strategy (AEB) technology,etc.,and the principles of these methods were introduced in detail. The development status of each method was summarized,and the applicable scope,variable load performance,advantages and disadvantages of each method were analyzed and compared. It is found that at present,condensate throttling technology and heating extraction steam regulation technology are relatively studied and applied,and play an obvious role in responding to load change instructions and improving variable load capacity at the initial stage of variable load. The research on variable load rate of pulverized coal fired boiler is more mature than that of circulating fluidized bed boiler,and the variable load rate is generally higher. Finally, the development trend of rapid load change rate promotion of thermal power units in the future was put forward,and on the basis of continuing to develop the existing fast load change methods,a new coordinated control strategy was designed and applied,which combined various regulation methods with traditional coordinated control. The application of the coupling of energy storage technology and thermal power units and the search for a wider range of peak regulation and more economical means on the basis of existing units will further improve the climbing speed of thermal power units,reduce the minimum stable output and increase the peak regulation and frequency regulation capacity of the power plant.