Chinese Science Citation Database Core Library(CSCD)Source Journals
Chinese Core Journals
Chinese Core Science and Technology Journals
RCCSE China Authoritative Academic Journal(A+)
Dutch Digest and Citation Database (Scopus)

Solid oxide fuel cell stack performance in integrated gasification fuel cell system

2023 No. 03
642
283
OnlineView
Download
Authors:
BA Liming
XIONG Xingyu
YANG Zhibin
PENG Suping
Unit:
School of Chemical & Environment Engineering,China University of Mining and Technology-Beijing;National Institute of Clean and-Low-Carbon Energy;School of Energy Power and Mechanical Engineering,North China Electric Power University
Abstract:

Integrated gasification fuel cell system is one of the important candidates for the next generation clean and high efficiency power generation technology. In order to avoid carbon deposition caused by the carbon monoxide disproportionation reaction of the coal syngas in the solid oxide fuel cell stack, it is necessary to humidify the syngas to a certain extent. A multi-physics multi-scale model of the solid oxide fuel cell stack was constructed based on alternative mapping method to analyze the performance of the stack under different humidification levels. After humidification, the water gas shift reaction rate in the stack increases significantly and interacts with the electrochemical reactions of hydrogen and carbon monoxide. The water gas shift reaction is relatively strong near the inlet of the cell flow channel in the stack, rapidly converting CO to H2, and, supplementing the consumption of hydrogen in its electrochemical reaction. However, the increase of humidification degree will also reduce the Nernst potential of hydrogen and inhibit the electrochemical reaction rate of hydrogen near the inlet section of the flow channel. The partial pressures of carbon monoxide and hydrogen are close to equilibrium at a distance greater than 60 mm from the inlet of the flow passage, the water gas shift reaction is weakened, and the gas reaction rate is controlled by the electrochemical reaction. The H/O and C/O volume fraction ratio in the inlet section of the flow channel are both low, which is easy to occur carbon deposition. More than 50% humidification can significantly reduce the risk of carbon deposition in the stack. Humidification will also cause performance degradation of the stack. Under the conditions of syngas composition adopted in this paper, humidification of 100% will cause 4.65% performance degradation.

Keywords:
coal gasification
solix oxide fuel cell
stack
alternative mapping
water gas shift
Citation format:
巴黎明(1982-),男,山东枣庄人,高级工程师,博士研究生。E-mail: stepheneall@163.com
Chart:
Articles:
--
Citation format:
--

About Journal

  • Executive director

    China Coal Science and Industry Group Co., Ltd

  • Sponsored by

    Coal Science Research Institute Co., Ltd
    Coal Industry Clean Coal Engineering
    Technology Research Center

  • Editor in Chief

    XIE Qiang

  • Vice Editor-in-Chief

    YU Chang
    SHI Yixiang
    ZHAO Yongchun
    DUAN Linbo
    CAO Jingpei
    ZENG Jie

  • Publication Frequencies

    Monthly

  • ISSN

    1006-6772

  • CN

    11-3676/TD

Covered by

  • CSTPCD
  • RCCSE(A+)
  • AJ
  • EBSCO host
  • Ulrichsweb
  • JST
  • Scopus

Contact us

New Media

  • Meichuanmei
    Meichuanmei
  • Clean Coal Technology
    Clean Coal Technology
  • Online Journals
    Online Journals
Website Copyright © {year} Clean Coal Technology
京ICP备05086979号-19
地址:Coal Tower, Hepingli, Chaoyang District, Beijing, China.
邮编:100013
Tel:86-10-87986452 / 010-87986451
E-mail:jjmjs@263.net