Chinese Science Citation Database Core Library(CSCD)Source Journals
Chinese Core Journals
Chinese Core Science and Technology Journals
RCCSE China Authoritative Academic Journal(A+)
Dutch Digest and Citation Database (Scopus)

Numerical simulation of carbon deposition in solid oxide fuel cells

2023 No. 03
701
324
OnlineView
Download
Authors:
WANG Yinan
WANG Yuqing
ZHANG Ruiyu
LI Xiaoxiao
SHI Yixiang
Unit:
School of Mechatronical Engineering,Beijing Institute of Technology;Department of Energy and Power Engineering,Tsinghua University
Abstract:

Fuel flexibility is one of the most significant advantages of Solid Oxide Fuel Cell (SOFC). However, when using hydrocarbons as fuel, the degradation of cell performance caused by anode carbon deposition is one of the most important reasons affecting the long-term stable operation of SOFC. To investigate the mechanism of the influence of anode carbon deposition on cell performance, a one-dimensional transient elementary reaction kinetic model of an SOFC fueled with syngas(H2,CO,H2O,CO2,CH4) was developed. This model incorporates the coupling effect of heterogeneous elementary chemical and electrochemical reactions, the electrode microstructure evolution, the charge and mass transport processes and the detailed evolution reaction of surface adsorbed carbon. The accuracy of the model was verified using the electrochemical impedance spectra at different moments in the reference experiment, and the mechanism of carbon deposition at SOFC anode was proposed based on the model. Under high temperature (>1 000 K) conditions, carbon is coverd on the Ni surface and Ni/YSZ/gas three-phase interface in the form of thin-film carbon, blocking the nonhomogeneous phase reaction and charge transfer reaction. At lower temperatures (<1 000 K), film carbon evolves into solid carbon, which grows inside the porous anode, blocking the anode pores and impeding gas diffusion. The constructed model can reflect this mechanism. Finally, the SOFC performance degradation due to carbon accumulation in different fuel components was investigated using the model. Study show that reducing the CH4 content in the fuel can effectively reduce the performance degradation rate of SOFCs and improve its operational performance.

Keywords:
SOFC
anode carbon deposition
degradation
elementary kinetics modeling
phase transition
Citation format:
王怡楠(2000-),女,河北邯郸人,硕士研究生。E-mail:3120220253@bit.edu.cn
Chart:
Articles:
--
Citation format:
--

About Journal

  • Executive director

    China Coal Science and Industry Group Co., Ltd

  • Sponsored by

    Coal Science Research Institute Co., Ltd
    Coal Industry Clean Coal Engineering
    Technology Research Center

  • Editor in Chief

    XIE Qiang

  • Vice Editor-in-Chief

    YU Chang
    SHI Yixiang
    ZHAO Yongchun
    DUAN Linbo
    CAO Jingpei
    ZENG Jie

  • Publication Frequencies

    Monthly

  • ISSN

    1006-6772

  • CN

    11-3676/TD

Covered by

  • CSTPCD
  • RCCSE(A+)
  • AJ
  • EBSCO host
  • Ulrichsweb
  • JST
  • Scopus

Contact us

New Media

  • Meichuanmei
    Meichuanmei
  • Clean Coal Technology
    Clean Coal Technology
  • Online Journals
    Online Journals
Website Copyright © {year} Clean Coal Technology
京ICP备05086979号-19
地址:Coal Tower, Hepingli, Chaoyang District, Beijing, China.
邮编:100013
Tel:86-10-87986452 / 010-87986451
E-mail:jjmjs@263.net