The controllable fabrication and structural optimization of carbon anode materials for sodium-ion batteries (SIBs) are one of the leading research directions in the field of electrochemical energy storage. Herein, the coal tar pitch from industrial byproduct was first used as the carbonous precursors to surface modification by a chemical cross-linking reaction of 1,4-benzenedimethanol, and then the hard carbon materials for SIBs were successfully prepared through high-temperature carbonization treatment.Combined with a series of characterization technologies including SEM, TEM, and nitrogen (N2) adsorption/desorption tests, it is confirmed that the chemical cross-linking modification of coal tar pitch could significantly restrain the graphitization degree of carbon materials, and thereby further increase layer spacing (0.373 nm) and carbon layer disorder. Meanwhile, the particle size of the obtained hard carbon material is minimized from 15 μm to about 2 μm. The electrochemical measurements demonstrate that the modified pitch-based hard carbon material (HC-1300) shows a high initial Coulombic efficiency of 80.1% and a specific capacity of 232.2 mAh/g at 0.1 A/g, which is significantly superior to that of the sample (DC-1300) obtained by direct carbonization.In addition, the HC-1300 sample delivers a specific capacity of 171.1 mAh/g at a high current density of 5 A/g and excellent capacity retention of 74.9% after 1 500 charging/discharging cycles, suggesting excellent rate performance and cycling stability.