Chinese Science Citation Database Core Library(CSCD)Source Journals
Chinese Core Journals
Chinese Core Science and Technology Journals
RCCSE China Authoritative Academic Journal(A+)
Dutch Digest and Citation Database (Scopus)

Fabrication of modified pitch-based hard carbon materials for high-performance sodium-ion storage

2023 No. 02
524
295
OnlineView
Download
Authors:
CHEN Tao
WU Jihao
CHE Xiaogang
LIU Siyu
HAN Xinghua
ZHENG Yiting
YANG Juan
Unit:
School of Chemistry and Chemical Engineering,North University of China;School of Chemical Engineering and Technology,Xi′an Jiaotong University
Abstract:

The controllable fabrication and structural optimization of carbon anode materials for sodium-ion batteries (SIBs) are one of the leading research directions in the field of electrochemical energy storage. Herein, the coal tar pitch from industrial byproduct was first used as the carbonous precursors to surface modification by a chemical cross-linking reaction of 1,4-benzenedimethanol, and then the hard carbon materials for SIBs were successfully prepared through high-temperature carbonization treatment.Combined with a series of characterization technologies including SEM, TEM, and nitrogen (N2) adsorption/desorption tests, it is confirmed that the chemical cross-linking modification of coal tar pitch could significantly restrain the graphitization degree of carbon materials, and thereby further increase layer spacing (0.373 nm) and carbon layer disorder. Meanwhile, the particle size of the obtained hard carbon material is minimized from 15 μm to about 2 μm. The electrochemical measurements demonstrate that the modified pitch-based hard carbon material (HC-1300) shows a high initial Coulombic efficiency of 80.1% and a specific capacity of 232.2 mAh/g at 0.1 A/g, which is significantly superior to that of the sample (DC-1300) obtained by direct carbonization.In addition, the HC-1300 sample delivers a specific capacity of 171.1 mAh/g at a high current density of 5 A/g and excellent capacity retention of 74.9% after 1 500 charging/discharging cycles, suggesting excellent rate performance and cycling stability.

Keywords:
coal tar pitch
surface chemical modification
hard carbon anode
electrochemical performance
sodium-ion batteries
Citation format:
陈涛(1995—),男,重庆潼南人,硕士研究生。E-mail:1835961809@qq.com
通讯作者:韩兴华(1981—),男,山西新绛人,讲师,博士。E-mail:hxh@nuc.edu.cn
杨卷(1987—),男,安徽宿州人,副教授,博士。E-mail:juanyang@xjtu.edu.cn
Chart:
Articles:
--
Citation format:
--

About Journal

  • Executive director

    China Coal Science and Industry Group Co., Ltd

  • Sponsored by

    Coal Science Research Institute Co., Ltd
    Coal Industry Clean Coal Engineering
    Technology Research Center

  • Editor in Chief

    XIE Qiang

  • Vice Editor-in-Chief

    YU Chang
    SHI Yixiang
    ZHAO Yongchun
    DUAN Linbo
    CAO Jingpei
    ZENG Jie

  • Publication Frequencies

    Monthly

  • ISSN

    1006-6772

  • CN

    11-3676/TD

Covered by

  • CSTPCD
  • RCCSE(A+)
  • AJ
  • EBSCO host
  • Ulrichsweb
  • JST
  • Scopus

Contact us

New Media

  • Meichuanmei
    Meichuanmei
  • Clean Coal Technology
    Clean Coal Technology
  • Online Journals
    Online Journals
Website Copyright © {year} Clean Coal Technology
京ICP备05086979号-19
地址:Coal Tower, Hepingli, Chaoyang District, Beijing, China.
邮编:100013
Tel:86-10-87986452 / 010-87986451
E-mail:jjmjs@263.net