Chinese Science Citation Database Core Library(CSCD)Source Journals
Chinese Core Journals
Chinese Core Science and Technology Journals
RCCSE China Authoritative Academic Journal(A+)
Dutch Digest and Citation Database (Scopus)

Regulation mechanism of polycarboxylate acid superplasticizer on hydration process of fly ash-based slurry

2023 No. 02
214
165
OnlineView
Download
Authors:
CHU Ruizhi
YAN Yaoqi
YANG Wei
LUO Weidong
REN Wanxing
MENG Xianliang
Unit:
Guizhou Panjiang Coal and Electricity Group Technology Research Institute Co.
Abstract:

The fluidity of fly ash-based shotcrete material plays a very important role in practical engineering applications. In order to explore the regulation mechanism of water reducing agent on the fluidity of fly ash-based slurry, the effects of different water reducing agent dosage on slurry flow performance were compared through the characteristics of reducing water rate, fluidity, setting time, slurry viscosity and shear stress,and the best water reducing agent and dosage were selected. The change law of hydration process and time of flyash-based slurry by polycarboxylate acid superplasticizer (PCE)was emphatically explored by using hydration heat analyzer, X-ray diffraction and scanning electron microscope and the hydration mechanism of shotcrete materials with PCE was proposed. The results show that PCE has the most obvious improvement on flow performance of fly ash base slurry. When the saturated content is 0.6%, the water reduction rate can reach 29.3%, the fluidity extends from 113 mm to 351 mm, the initial setting time is extended from 32 min to 149 min, and the final setting time is extended from 42 min to 182 min, with a significant delayed setting phenomenon. In the early hydration process, The adsorption of PCE can inhibit the dissolution of C3A, hinder the growth of ettringite (AFt) and change its crystal form. At the same time, the complexation of PCE can combine with Ca2+  to form complex, affecting the formation of Ca(OH)2, delaying the enrichment of Ca2+ and prolonging the induction period of cement hydration. The hydration of C3S is also inhibited, which reduce the number of C-S-H nucleation and the second hydration exothermic peak. In the middle and late stages of hydration, the inhibition effect of PCE fails and the mechanical strength of the material increases gradually. PCE can only delay the early hydration process, but has no effect on the middle and late hydration process.

Keywords:
polycarboxylate acid superplasticizer
hydration process
shotcrete materials
induction period
fluidity
Citation format:
褚睿智(1976—),女,辽宁铁岭人,教授,博士。E-mail:4038@cumt.edu.cn
Chart:
Articles:
--
Citation format:
--

About Journal

  • Executive director

    China Coal Science and Industry Group Co., Ltd

  • Sponsored by

    Coal Science Research Institute Co., Ltd
    Coal Industry Clean Coal Engineering
    Technology Research Center

  • Editor in Chief

    XIE Qiang

  • Vice Editor-in-Chief

    YU Chang
    SHI Yixiang
    ZHAO Yongchun
    DUAN Linbo
    CAO Jingpei
    ZENG Jie

  • Publication Frequencies

    Monthly

  • ISSN

    1006-6772

  • CN

    11-3676/TD

Covered by

  • CSTPCD
  • RCCSE(A+)
  • AJ
  • EBSCO host
  • Ulrichsweb
  • JST
  • Scopus

Contact us

New Media

  • Meichuanmei
    Meichuanmei
  • Clean Coal Technology
    Clean Coal Technology
  • Online Journals
    Online Journals
Website Copyright © {year} Clean Coal Technology
京ICP备05086979号-19
地址:Coal Tower, Hepingli, Chaoyang District, Beijing, China.
邮编:100013
Tel:86-10-87986452 / 010-87986451
E-mail:jjmjs@263.net