At present, the total number of industrial boilers in China exceeds 600 000, among which the coal-fired indus trial boilers account for more than 80% of the total number of active industrial boilers, and are widely used in various fields of production and life as the main heat supply equipment. As the second largest coal-fired pollution source in China, coal-fired industrial boilers are an inevitable way to achieve win-win economic, environmental and social benefits by promoting their clean and efficient operation, effective energy conservation and emission reduction. A low-nitrogen swirl burner capable of preheating was designed. On the basis of the low-nitrogen swirl burner, a precombustion chamber was added to achieve stable combustion, and the products of pulverized coal after preheating solution were sent into the furnace for combustion. By controlling the pyrolysis atmosphere, NO generated in the pyrolysis gas can be reduced to N2 to further control the emission of NOx. In this paper, CFD simulation method was used to study the influence of internal and external secondary air ratio and secondary air swirl intensity on combustion performance and pollutant emission characteristics of preheating solution low-nitrogen swirl burner. Through the comparative analysis of multi-working conditions of velocity field, temperature field and component distribution, suggestions were put forward for the optimization of burner operation parameters. The simulation results show that when the internal secondary air rate increases to 54%, the internal secondary air destroys the backflow zone in the precombustion chamber, making the burner unable to achieve stable combustion. The maximum internal secondary air rate of the preheating solution low-nitrogen swirl burner is about 50%. In the range of ensur-ing combustion stability, the secondary air rate is increased, the area of low oxygen area in the precombustion chamber is increased, the mixing of secondary air and primary air is delayed, NOx emission is reduced, but the residence time of coal powder is reduced by high wind speed, and the burnout rate of exit section coke is slightly reduced. When the internal secondary air swirl blade angle decreases to 30°, the annular combustion zone in the precombustion chamber disappears, making the burner unable to achieve stable ignition. There is a minimum internal secondary air swirl blade angle for stable combustion of the burner between 30° and 45°. The angle of the internal secondary wind cyclone blade increases, the flame rigidity of the burner outlet decreases and is compressed in the axial direction, the temperature in the front part of the furnace increases, and the high temperature zone is concentrated, so that the coke is fully burned, but the NOx concentration in the cross-section of the furnace outlet increases slightly.