Chinese Science Citation Database Core Library(CSCD)Source Journals
Chinese Core Journals
Chinese Core Science and Technology Journals
RCCSE China Authoritative Academic Journal(A+)
Dutch Digest and Citation Database (Scopus)

Numerical simulation on the influence of secondary air ratio and swirling intensity on the performance of a pre-combustion low nitrogen swirl burner

2022 No. 12
423
244
OnlineView
Download
Authors:
FAN Yongcheng
ZHANG Feilong
WANG Yongdong
WANG Li
LIU Junjie
TAN Houzhang
XU Xinwei
WANG Xuebin
Unit:
CHN Energy Shendong Coal Group Co.,Ltd.,;School of Energy and Power Engineering,Xi′an Jiaotong University
Abstract:

At present, the total number of industrial boilers in China exceeds 600 000, among which the coal-fired indus trial boilers account for more than 80% of the total number of active industrial boilers, and are widely used in various fields of production and life as the main heat supply equipment. As the second largest coal-fired pollution source in China, coal-fired industrial boilers are  an inevitable way to achieve win-win economic, environmental and social benefits by promoting their clean and efficient operation, effective energy conservation and emission reduction. A low-nitrogen swirl burner capable of preheating was designed. On the basis of the low-nitrogen swirl burner, a precombustion chamber was added to achieve stable combustion, and the products of pulverized coal after preheating solution were sent into the furnace for combustion. By controlling the pyrolysis atmosphere, NO generated in the pyrolysis gas can be reduced to N2 to further control the emission of NOx. In this paper, CFD simulation method was used to study the influence of internal and external secondary air ratio and secondary air swirl intensity on combustion performance and pollutant emission characteristics of preheating solution low-nitrogen swirl burner. Through the comparative analysis of multi-working conditions of velocity field, temperature field and component distribution, suggestions were put forward for the optimization of burner operation parameters. The simulation results show that when the internal secondary air rate increases to 54%, the internal secondary air destroys the backflow zone in the precombustion chamber, making the burner unable to achieve stable combustion. The maximum internal secondary air rate of the preheating solution low-nitrogen swirl burner is about 50%. In the range of ensur-ing combustion stability, the secondary air rate is increased, the area of low oxygen area in the precombustion chamber is increased, the mixing of secondary air and primary air is delayed, NOx emission is reduced, but the residence time of coal powder is reduced by high wind speed, and the burnout rate of exit section coke is slightly reduced. When the internal secondary air swirl blade angle decreases to 30°, the annular combustion zone in the precombustion chamber disappears, making the burner unable to achieve stable ignition. There is a minimum internal secondary air swirl blade angle for stable combustion of the burner between 30° and 45°. The angle of the internal secondary wind cyclone blade increases, the flame rigidity of the burner outlet decreases and is compressed in the axial direction, the temperature in the front part of the furnace increases, and the high temperature zone is concentrated, so that the coke is fully burned, but the NOx concentration in the cross-section of the furnace outlet increases slightly.

Keywords:
low nitrogen burner
precombustion chamber
secondary air ratio
swirling intensity
NOx
Citation format:
范永成(1984—),男,内蒙古鄂尔多斯人,工程师,硕士。E-mail:410459838@qq.com
Chart:
Articles:
--
Citation format:
--

About Journal

  • Executive director

    China Coal Science and Industry Group Co., Ltd

  • Sponsored by

    Coal Science Research Institute Co., Ltd
    Coal Industry Clean Coal Engineering
    Technology Research Center

  • Editor in Chief

    XIE Qiang

  • Vice Editor-in-Chief

    YU Chang
    SHI Yixiang
    ZHAO Yongchun
    DUAN Linbo
    CAO Jingpei
    ZENG Jie

  • Publication Frequencies

    Monthly

  • ISSN

    1006-6772

  • CN

    11-3676/TD

Covered by

  • CSTPCD
  • RCCSE(A+)
  • AJ
  • EBSCO host
  • Ulrichsweb
  • JST
  • Scopus

Contact us

New Media

  • Meichuanmei
    Meichuanmei
  • Clean Coal Technology
    Clean Coal Technology
  • Online Journals
    Online Journals
Website Copyright © {year} Clean Coal Technology
京ICP备05086979号-19
地址:Coal Tower, Hepingli, Chaoyang District, Beijing, China.
邮编:100013
Tel:86-10-87986452 / 010-87986451
E-mail:jjmjs@263.net