Chinese Science Citation Database Core Library(CSCD)Source Journals
Chinese Core Journals
Chinese Core Science and Technology Journals
RCCSE China Authoritative Academic Journal(A+)
Dutch Digest and Citation Database (Scopus)

Adsorption of synthesis of magnetic zeolite from coal-fired fly ash on Hg2+ in desulfurization wastewater

2022 No. 10
497
273
OnlineView
Download
Authors:
ZHU Xiaolei
YANG Jianping
LI Hailong
ZHAO Yongchun
ZHANG Junying
Unit:
School of Energy Science and Engineering,Central South University;School of Energy and Power Engineering,Huazhong University of Science and Technology;State Key Laboratory of Coal Combustion,Huazhong University of Science and Technology
Abstract:

Coal combustion is one of the most significant anthropogenetic mercury emission sources. The massive discharge of mercury-containing desulfurization wastewater from coal-fired power plants poses a serious threat to human health and the ecological environment. It is urgent to develop efficient and economical mercury ion removal technology from desulfurization wastewater. The magnetic zeolite mercury adsorbent was prepared by extracting aluminum silicon minerals from fly ash, a byproduct of coal combustion. The magnetic zeolite mercury adsorbent was prepared by using the iron minerals in fly ash, in order to solve the problem that the adsorbent was difficult to separate from the waste water after mercury adsorption, resulting in the secondary release of mercury. The synthesized magnetic zeolite was characterized and analyzed by BET, XRD, TEM and other characterization methods. The effects of parameters such as solid-liquid ratio, initial pH of solution, and oscillation time on the adsorption  of magnetic zeolite for mercury ions were systematically studied. The kinetics of adsorption of mercury ions on magnetic zeolites was studied. The results show that the synthesized magnetic zeolite has a spherical core-shell structure, and the magnetic core is evenly wrapped by the zeolite. The specific surface area of the magnetic zeolite is 4.46 m2/g, the most probable pore size is 18.25 nm, which belongs to the mesoporous range. The magnetic zeolite exhibits magnetization hysteresis, its coercivity is about 10 000 A/m, and it can be separated from desulfurization wastewater by external magnetic field. The optimum adsorption con ditions are as follows: the solid-liquid ratio is 5 g/L, the optimum initial pH is 5, and the shaking time is 90 min. Under these conditions, the removal rate of Hg2+ reaches 92%. The kinetic study results show that the pseudo-first-order kinetic model can more accurately describe the variation of Hg2+ adsorption capacity with time, and the fitted equilibrium adsorption capacity is 23.24 mg/g, which is better than that of commercial activated carbon mercury adsorbents. Magnetic zeolite has good removal  for mercury ions in desulfurization wastewater, which provides a new idea for the refined utilization of coal-fired fly ash.

Keywords:
mercury removal
coal combustion
fly ash
magnetic zeolite
desulfurization wastewater
adsorption kinetics
Citation format:
朱晓蕾(1998—),女,山东临沂人,硕士研究生。E-mail:xiaolei980318@sina.com
Chart:
Articles:
--
Citation format:
--

About Journal

  • Executive director

    China Coal Science and Industry Group Co., Ltd

  • Sponsored by

    Coal Science Research Institute Co., Ltd
    Coal Industry Clean Coal Engineering
    Technology Research Center

  • Editor in Chief

    XIE Qiang

  • Vice Editor-in-Chief

    YU Chang
    SHI Yixiang
    ZHAO Yongchun
    DUAN Linbo
    CAO Jingpei
    ZENG Jie

  • Publication Frequencies

    Monthly

  • ISSN

    1006-6772

  • CN

    11-3676/TD

Covered by

  • CSTPCD
  • RCCSE(A+)
  • AJ
  • EBSCO host
  • Ulrichsweb
  • JST
  • Scopus

Contact us

New Media

  • Meichuanmei
    Meichuanmei
  • Clean Coal Technology
    Clean Coal Technology
  • Online Journals
    Online Journals
Website Copyright © {year} Clean Coal Technology
京ICP备05086979号-19
地址:Coal Tower, Hepingli, Chaoyang District, Beijing, China.
邮编:100013
Tel:86-10-87986452 / 010-87986451
E-mail:jjmjs@263.net