The processing and utilization of coal resources in the context of "Dual Carbon" target is facing fundamental changes. The traditional utilization methods no longer meet the current ecological and environmental protection requirements, and coal, as the cornerstone of national energy security, will continue to be played an important role. More than 40% of the coals in China are high-quality low-rank bituminous coals. During the process of conversion and utilization, they are faced with the problem of high inertinite (>35%), which limits the high-value transformation of this part of the resource. Due to the similarity between macerals and the complexity of occurrence characteristics, the separation of coal macerals is difficult and challenging, which greatly restricts the high-quality conversion and utilization of these resources. In order to fully understand the progress of development and utilization of coal macerals, and to promote the clean, efficient and low-carbon utilization of coal resources, three aspects, the determination, separation methods and clean utilization of coal macerals, were focused on. And the ideas and directions for future development were put forward. The determination methods of macerals faced the problem of difficulty in identifying fine-grained materials or low test accuracy. Therefore, there is an urgent need to develop a high-efficiency determination method based on the structural parameters of coal macerals, which is not limited by particle size. In terms of separation methods of macerals, new separation methods such as electroflotation-electrocoagulation separation, oily bubble flotation and jet milling-fineness grading system can effectively improve the traditional separation methods with poor selectivity and low enrichment rate, and have the advantages of process control and strong adaptability. The coal differential processing and clean utilization technology centered on the separation of coal macerals breaks the conventional coal-use standard and coal type restrictions. After the coal macerals are effectively separated, the vitrinite-rich coal can be widely used in coal blending, coking, pyrolysis, liquefaction and other fields. Inertinite-rich coal can be used as fuel or raw material for preparing carbon materials. Coal quality-based utilization based on macerals can fundamentally improve the energy efficiency of coal conversion and utilization, and reduce carbon and pollutant emissions.