Carbon dioxide, one of the main components of greenhouse gases, increased rapidly because of the growing use of fossil fuels. Excessive emissions of greenhouse gases have accelerated global warming and climate change since the humanity entered the industrial society.Carbon capture, utilization and storage (CCUS) technology has received a great deal of attention as an effective way to reduce CO2 emission. Among all the ways to reduce carbon dioxide emissions, adsorption methods exhibit excellent prospect to achieve the CO2 separation and removal. Solid adsorption materials are considered to be the ideal CO2 capture materials because they have the advantages of wide operating temperature range, less corrosion to the devices, less waste produced in the recycling process, and the used adsorbent easy to manage. The research progresses of three types of CO2 sorbents were reviewed, including low temperature,medium temperature and high temperature sorbents. And the advantages, limitations and methods on enhancing the CO2 capture performance and cyclic stability of various solid sorbents were pointed out. Low temperature sorbents exhibit superior sorption capability but low selectivity under high pressure. And the moisture in the gas stream may hydrolyze the coordination bonds of the sorbents and compete with CO2 for adsorption, leading to a decrease in CO2 adsorption performance. Thus, the adsorption capacity, adsorption selectivity, and hydrothermal stability of low temperature sorbents are the focus of their research. Among the medium temperature solid adsorbents, hydrotalcite-like materials are challenged by their hydrogen-bonded stacked structure which limits further increase in adsorption capacity. And the main challenge to the practical application of MgO sorbents for CO2 capture lies in their quite low CO2 capture capacity and poor sorption kinetics, due to the barren basic active sites and intrinsically high lattice enthalpy. Therefore, improvement of the adsorption capacity and cycling stability has become a priority of medium temperature sorbents to be addressed. As for high temperature sorbents,Li4SiO4 adsorbents have lower preparation costs and higher adsorption capacities than that of the Li2ZrO3adsorbents,Nevertheless, both of them face the problem of kinetic limitations. CaO-based sorbents have received tremendous attention due to their high theoretical capture capacity, wide availability, low cost, non-toxicity and fast adsorption kinetics. However, thermal deactivation in activity caused by sintering and attrition of the sorbent particles are identified as the primary challenges with CaO-based sorbents, in the multi-cycle process of CO2 adsorption/desorption. And several modification methods have been utilized to fabricate high-performance CaO-based sorbents, such as high-temperature pretreatment, hydration, chemical doping, acid modification. Moreover, the development of granulation techniques and the scale-up production are quite urgent for realistic large-scale applications.