Chinese Science Citation Database Core Library(CSCD)Source Journals
Chinese Core Journals
Chinese Core Science and Technology Journals
RCCSE China Authoritative Academic Journal(A+)
Dutch Digest and Citation Database (Scopus)

Research progress on solid sorbents for CO2 capture

2022 No. 01
1070
610
OnlineView
Download
Authors:
JIANG Tao
WEI Xiaojuan
WANG Shengping
MA Xinbin
Unit:
School of Chemical Engineering and Technology,Tianjin University;Key Laboratory for Green Chemical Technology,Tianjin university
Abstract:

Carbon dioxide, one of the main components of greenhouse gases, increased rapidly because of the growing use of fossil fuels. Excessive emissions of greenhouse gases have accelerated global warming and climate change since the humanity entered the industrial society.Carbon capture, utilization and storage (CCUS) technology has received a great deal of attention as an effective way to reduce CO2 emission. Among all the ways to reduce carbon dioxide emissions, adsorption methods exhibit  excellent prospect to achieve the CO2 separation and removal. Solid adsorption materials are considered to be the ideal CO2 capture materials because they have the advantages of wide operating temperature range, less corrosion to the devices, less waste produced in the recycling process, and the used adsorbent easy to manage. The research progresses of three types of CO2 sorbents were reviewed, including low temperature,medium temperature and high temperature sorbents. And the advantages, limitations and methods on enhancing the CO2 capture performance and cyclic stability of various solid sorbents were pointed out. Low temperature sorbents exhibit superior sorption capability but low selectivity under high pressure. And the moisture in the gas stream may hydrolyze the coordination bonds of the sorbents and compete with CO2 for adsorption, leading to a decrease in CO2 adsorption performance. Thus, the adsorption capacity, adsorption selectivity, and hydrothermal stability of low temperature sorbents are the focus of their research. Among the medium temperature solid adsorbents, hydrotalcite-like materials are challenged by their hydrogen-bonded stacked structure which limits further increase in adsorption capacity. And the main challenge to the practical application of MgO sorbents for CO2 capture lies in their quite low CO2 capture capacity and poor sorption kinetics, due to the barren basic active sites and intrinsically high lattice enthalpy. Therefore, improvement of the adsorption capacity and cycling stability has become a priority of medium temperature sorbents to be addressed. As for high temperature sorbents,Li4SiO4 adsorbents have lower preparation costs and higher adsorption capacities than that of the Li2ZrO3adsorbents,Nevertheless, both of them face the problem of kinetic limitations. CaO-based sorbents have received tremendous attention due to their high theoretical capture capacity, wide availability, low cost, non-toxicity and fast adsorption kinetics. However, thermal deactivation in activity caused by sintering and attrition of the sorbent particles are identified as the primary challenges with CaO-based sorbents, in the multi-cycle process of CO2 adsorption/desorption. And several modification methods have been utilized to fabricate high-performance CaO-based sorbents, such as high-temperature pretreatment, hydration, chemical doping, acid modification. Moreover, the development of granulation techniques and the scale-up production are quite urgent for realistic large-scale applications. 

Keywords:
CO2 capture
solid adsorption materials
low temperature adsorption
medium temperature adsorption
high temperature adsorption
CaO-based
Citation format:
江涛(1993—),男,江西莲花人,博士研究生。E-mail: taojiang@tju.edu.cn。
通讯作者:王胜平(1973—),女,河北石家庄人,教授,博士。E-mail: spwang@tju.edu.cn
Chart:
Articles:
--
Citation format:
--

About Journal

  • Executive director

    China Coal Science and Industry Group Co., Ltd

  • Sponsored by

    Coal Science Research Institute Co., Ltd
    Coal Industry Clean Coal Engineering
    Technology Research Center

  • Editor in Chief

    XIE Qiang

  • Vice Editor-in-Chief

    YU Chang
    SHI Yixiang
    ZHAO Yongchun
    DUAN Linbo
    CAO Jingpei
    ZENG Jie

  • Publication Frequencies

    Monthly

  • ISSN

    1006-6772

  • CN

    11-3676/TD

Covered by

  • CSTPCD
  • RCCSE(A+)
  • AJ
  • EBSCO host
  • Ulrichsweb
  • JST
  • Scopus

Contact us

New Media

  • Meichuanmei
    Meichuanmei
  • Clean Coal Technology
    Clean Coal Technology
  • Online Journals
    Online Journals
Website Copyright © {year} Clean Coal Technology
京ICP备05086979号-19
地址:Coal Tower, Hepingli, Chaoyang District, Beijing, China.
邮编:100013
Tel:86-10-87986452 / 010-87986451
E-mail:jjmjs@263.net