Chinese Science Citation Database Core Library(CSCD)Source Journals
Chinese Core Journals
Chinese Core Science and Technology Journals
RCCSE China Authoritative Academic Journal(A+)
Dutch Digest and Citation Database (Scopus)

Research progress on distribution characteristics and modulation methods of hydrogen bonds during thermal conversion of lignite

2021 No. 04
592
273
OnlineView
Download
Authors:
HOU Ranran
BAI Zongqing
FENG Zhihao
GUO Zhenxing
KONG Lingxue
BAI Jin
LI Wen
Unit:
State Key Laboratory of Coal Conversion,Institute of Coal Chemistry,Chinese Academy of Sciences;University of Chinese Academy of Sciences
Abstract:

With high content of oxygen and high thermal reactivity,lignite is an important feedstock for the preparation of high value-added chemicals,such as phenols and humic acids. The heteroatoms especially the abundant oxygen-containing functional groups(e.g. phenolic hydroxyl groups and carboxyl groups)result in the existence of a large number of hydrogen bonds in lignite. Hydrogen bonds are usually involved in thermal conversion(pyrolysis,drying and direct liquefaction)of lignite,mainly including hydrogen bonds in lignite and hydrogen bond between lignite and solvents. Those two kinds of hydrogen bonds apparently differ in geometry configuration and strength. To present,various hydrogen bonds can be figured out by experimental methods(such as volumetric swelling degree and infrared spectroscopy),as well as quantum chemistry calculations. Hydrogen bonds in coal and hydrogen bonds between lignite and solvent exist widely,and significantly affect thermal conversion of lignite,especially pyrolysis and direct coal liquefaction. Hydrogen bonds in lignite play important roles in the stabilization of macromolecular network of coal,which can promote dehydration of phenolic hydroxyl groups and carboxyl groups,as well as the low-temperature crosslinking reactions during thermal conversion and is not conducive to the formation of light products such as tar. The hydrogen bond between lignite and solvent is an important form of interaction between lignite and solvent. Its strength significantly affects the physical and chemical reactions of lignite in the process of thermal conversion,such as extraction,swelling and deoxidation. It is of great significance for the clean and efficient conversion of lignite to fully understand the existing forms and influencing factors of hydrogen bonds related to lignite,and to regulate the hydrogen bonds on this basis. To present,the main purpose of hydrogen bonds modulation is destroying hydrogen bonds which exist in lignite,so that the crosslinking reactions during thermal conversion can be suppressed to some degree. It can be realized by preheating treatment at relatively low temperature,as well as solvent pretreatment using stronger hydrogen bonds acceptors such as pyridine and ionic liquid. However,current study about hydrogen bonds formed by lignite and solvents are mainly qualitative researched,the in-situ observation and quantitative analysis of the lignite thermal conversion are lack.

Keywords:
lignite
thermal conversion
oxygen-containing functional groups
hydrogen bonds modulation
Citation format:
侯冉冉(1992—),女,山东德州人,博士研究生,研究方向为褐煤温和液化。E-mail:houranran1992@163.com。
通讯作者:白宗庆,研究员,研究方向为低阶煤及生物质提质利用。E-mail:baizq@sxicc.ac.cn
Chart:
Articles:
--
Citation format:
--

About Journal

  • Executive director

    China Coal Science and Industry Group Co., Ltd

  • Sponsored by

    Coal Science Research Institute Co., Ltd
    Coal Industry Clean Coal Engineering
    Technology Research Center

  • Editor in Chief

    XIE Qiang

  • Vice Editor-in-Chief

    YU Chang
    SHI Yixiang
    ZHAO Yongchun
    DUAN Linbo
    CAO Jingpei
    ZENG Jie

  • Publication Frequencies

    Monthly

  • ISSN

    1006-6772

  • CN

    11-3676/TD

Covered by

  • CSTPCD
  • RCCSE(A+)
  • AJ
  • EBSCO host
  • Ulrichsweb
  • JST
  • Scopus

Contact us

New Media

  • Meichuanmei
    Meichuanmei
  • Clean Coal Technology
    Clean Coal Technology
  • Online Journals
    Online Journals
Website Copyright © {year} Clean Coal Technology
京ICP备05086979号-19
地址:Coal Tower, Hepingli, Chaoyang District, Beijing, China.
邮编:100013
Tel:86-10-87986452 / 010-87986451
E-mail:jjmjs@263.net