Chinese Science Citation Database Core Library(CSCD)Source Journals
Chinese Core Journals
Chinese Core Science and Technology Journals
RCCSE China Authoritative Academic Journal(A+)
Dutch Digest and Citation Database (Scopus)

NOx emission model of 300 MW subcritical circulating fluidized bed unit

2023 No. 08
390
140
OnlineView
Download
Authors:
LIU Chun
GAO Mingming
ZHANG Hongfu
ZHANG Guohua
YUE Guangxi
Unit:
State Key Labof Alternate Electric PowerSystem with Renewable Energy Sources ( North China Electric Power University )
Departmentof Energy and Power Engineering , Tsinghua University
Abstract:

With the increasingly strict pollutant emission standards, SNCR has become a new technology widely used in circulating fluid⁃ized bed (CFB) units to reduce NOx emissions. However, the difficulty of SNCR control will be increased due to the fluctuation of NOxemission concentration during variable load operation of circulating fluidized bed units. Due to the variable load dynamic NOx emis⁃sion model study is less, and in order to the realization of the dynamic prediction of NOx load change process of circulating fluidized bedunit, the article mechanism of NOx formation and SNCR reaction mechanism inside the furnace was analyzed, with coal and air volume,injection amount of ammonia, as input parameters, such as bed temperature, and mathematical modeling methods were used to establish aNOx dynamic emission model. Combined with the actual operation data of a 300 MW subcritical CFB unit, the dynamic simulation of dif⁃ferent loads was carried out. The results show that the model can better fit the NOx emission trend in the dynamic process. The average ab⁃solute errors between the calculated values of the model and the real values under 300 MW and 150 MW typical load conditions and varia⁃ble load conditions are 3.5, 1.2 and 5.7 mg/ m3, respectively, with high accuracy, which can realize the real-time prediction of NOxemission of CFB unit, with the predicted time of 4-5 min. Then, the open-loop step experiments of coal supply, air supply, urea flowand multi-variable under different working conditions were carried out. The experimental results show that the model can better reflect thedynamic characteristics of NOx emission process. The results can provide reference for the optimization of ultra-low emission control ofCFB units.

Keywords:
circulating fluidized bed
load change
NOx emission
SNCR
prediction model
Citation format:
刘春(1998—),男,山东潍坊人,硕士研究生。E-mail:hbdldxlc@163.com
Chart:
Articles:
--
Citation format:
LIU Chun,GAO Mingming,ZHANG Hongfu,et al.NOx emission model of 300 MW subcritical circulating fluidized bed unit[J].Clean Coal Technology,2023,29(8):109-115.

About Journal

  • Executive director

    China Coal Science and Industry Group Co., Ltd

  • Sponsored by

    Coal Science Research Institute Co., Ltd
    Coal Industry Clean Coal Engineering
    Technology Research Center

  • Editor in Chief

    XIE Qiang

  • Vice Editor-in-Chief

    YU Chang
    SHI Yixiang
    ZHAO Yongchun
    DUAN Linbo
    CAO Jingpei
    ZENG Jie

  • Publication Frequencies

    Monthly

  • ISSN

    1006-6772

  • CN

    11-3676/TD

Covered by

  • CSTPCD
  • RCCSE(A+)
  • AJ
  • EBSCO host
  • Ulrichsweb
  • JST
  • Scopus

Contact us

New Media

  • Meichuanmei
    Meichuanmei
  • Clean Coal Technology
    Clean Coal Technology
  • Online Journals
    Online Journals
Website Copyright © {year} Clean Coal Technology
京ICP备05086979号-19
地址:Coal Tower, Hepingli, Chaoyang District, Beijing, China.
邮编:100013
Tel:86-10-87986452 / 010-87986451
E-mail:jjmjs@263.net