循环流化床锅炉烟气中 VOCs 分布规律及排放特性

王建国1,朱 蒙1,卢少华1,张晓光2

(1.河北建投宣化热电有限责任公司,河北张家口 075100;2.河北冀研能源科学技术研究院有限公司,河北石家庄 050000)

摘 要:为了解循环流化床(CFB)锅炉烟气中挥发性有机物(VOCs)的分布和排放情况,明晰烟气处 理装置对 VOCs 的处理效果,在某台 200 MW CFB 锅炉机组上,开展了烟气中 CH₄、非甲烷总烃 (NMHCs)和多种典型 VOCs 组分的全流程浓度监测,并分析了燃煤、飞灰和炉渣 3 种固体样品中 CH₄、NMHCs 含量。结果表明,CFB 锅炉机组在 100%和 50%负荷下 SCR 入口处烟气中 CH₄和 NMHCs 质量浓度分别为 0.65 和 6.63 mg/m³,经过一系列烟气处理装置后 CH₄质量浓度为 0.14~ 0.18 mg/m³,NMHCs 质量浓度为 1.05~1.43 mg/m³。煤样中 VOCs 质量分数为 49 979.65 mg/kg,而飞 灰和炉渣内只残余少量 VOCs。CFB 锅炉机组排放烟气中主要以苯、甲苯、乙苯、对/间二甲苯、苯乙 烯、邻二甲苯等碳原子数≥6 的苯系物和以正已烷为代表的烃类化合物为主。SCR 脱硝系统和袋式 除尘器对烟气中 VOCs 处理效率较好,经过全部污染物治理设备后,通过烟囱排放的总 VOCs 质量浓 度为 1.19~1.61 mg/m³,总 VOCs 协同脱除效率为 77.88%~78.64%,现有烟气处理设施整体脱除效果 可以满足相应排放要求。

关键词:循环流化床;挥发性有机物(VOCs);非甲烷总烃(NMHCs);排放特性;SCR 脱硝系统;袋式除 尘器;协同脱除

中图分类号:TQ53;TK114 文献标志码:A 文章编号:1006-6772(2022)02-0093-06

Distribution and emission characteristics of VOCs in flue gas of CFB boiler

WANG Jianguo¹, ZHU Meng¹, LU Shaohua¹, ZHANG Xiaoguang²

(1.Hebei Jiantou Xuanhua Thermal Power Co., Ltd., Zhangjiakou 075100, China; 2.Hebei Ji-Yan Energy Science and Technology

Rsearch Institute Co., Ltd., Shijiazhuang 050000, China)

Abstract: In order to understand the distribution and emission of volatile organic compounds (VOCs) in flue gas of circulating fluidized bed (CFB) boiler, as well as the treatment effect of flue gas treatment device, the whole process concentration monitoring of CH_4 , non-methane total hydrocarbon (NMHCs) and a variety of typical VOCs components in flue gas of a 200 MW CFB boiler unit was carried out. The contents of CH_4 and NMHCs in three solid samples of coal burning, fly ash and slag were analyzed. The results show that the mass concentrations of CH_4 and NMHCs in the flue gas at the entrance of SCR are 0.65 and 6.63 mg/m³ respectively under 100% and 50% load of CFB boiler units, and the mass concentrations of CH_4 emission and NMHCs after a series of flue gas treatment devices are 0.14–0.18 and 1.05–1.43 mg/m³, respectively. The total VOCs content in coal sample is 49 979.65 mg/kg, while only a small amount of VOCs remains in fly ash and slag. The flue gas of CFB boiler unit is mainly benzene series with carbon atomic number \geq 6, such as benzene, toluene, ethylbenzene, p/m-xylene, styrene, o-xylene and hydrocarbons represented by n-hexane. SCR denitration system and bag filter have better treatment efficiency for VOCs in flue gas. After all pollutant treatment equipment, the total VOCs mass concentration discharged through the chinney is 1.19–1.61 mg/m³, and the total VOCs synergistic removal efficiency is 77.88%–78.64%. The overall removal effect of existing flue gas treatment facilities can meet the corresponding discharge requirements.

Key words: CFB; volatile organic compounds (VOCs); non-methane total hydrocarbon (NMHCs); emission characteristics; SCR denitrification system; fabric filter; collaborative removal

引用格式:王建国,朱蒙,卢少华,等.循环流化床锅炉烟气中 VOCs 分布规律及排放特性[J].洁净煤技术,2022,28(2): 93-98.

WANG Jianguo, ZHU Meng, LU Shaohua, et al. Distribution and emission characteristics of VOCs in flue gas of CFB boiler [J]. Clean Coal Technology, 2022, 28(2):93-98.

收稿日期:2021-10-11;责任编辑:白娅娜 DOI:10.13226/j.issn.1006-6772.VOCs21101101

作者简介:王建国(1974—),男,河北邢台人,工程师,硕士。E-mail:wangjiang1974@163.com。通讯作者:张晓光(1991—), 男,河北保定人,工程师,硕士。E-mail:zhangxg991@sina.com

0 引 言

我国是煤炭消费大国,据统计,我国 2020 年能 源消费总量为 49.8 亿 t 标准煤,其中煤炭消费量占 能源消费总量的 56.8%^[1-2]。而发电是煤炭消耗的 重要行业之一,2020 年燃煤发电占我国发电量 63.2%^[3-4]。随着我国环保治理力度的不断加大,燃 煤电厂进行了一系列改造,现已在 SO₂、NO_x及可吸 入颗粒物等方面实现超低排放^[5-7]。然而,煤燃烧 过程中还会释放一定的挥发性有机物(VOCs), VOCs 是臭氧和二次有机气溶胶形成的关键前驱 体,对环境和人类健康具有较大危害^[8-11]。

煤粉炉(PC)和循环流化床锅炉(CFB)是大规 模火力发电的2种技术,CFB具有燃料适应性广、燃 烧温度低、SO₂和 NO_x质量浓度低等优点,尤其对煤 矸石等劣质煤有极强的适应性^[12]。目前我国拥有 超过3000台CFB锅炉,总装机容量已近1亿kW, 是世界上CFB锅炉数量最多、容量最大的国家^[13]。 近年来,随着300 MW 级和600 MW 级大型CFB锅 炉机组的成功投运,CFB技术发展势头迅猛^[14]。

目前针对火力发电厂有机污染物排放研究主要 集中在燃煤锅炉方面。史晓宏等^[15]对 300 MW 燃 煤机组开展了烟气中 CH₄、非甲烷总烃(NMHCs)和 多种典型 VOCs 的全流程浓度监测。徐静颖等^[16] 论述了燃煤有机污染物生成排放特性与采样方法。 孙树睿等^[17]分析了我国 7 家典型燃煤电厂和 2 家 焦化厂燃煤锅炉在脱硫工艺设施前后排放烟气中的 VOCs 排放特性。李津津等^[18]分析了燃煤电厂烟气 中有机物的迁移转化规律以及烟气处理设施对有机 物的协同去除作用。CFB 锅炉作为大规模火力发 电的一种重要形式,在燃用煤质、锅炉燃烧温度、尾 气处理设施等方面均与燃煤锅炉有重大差异,相应 的有机污染物排放情况也与燃煤锅炉存在差异。然 而针对 CFB 锅炉机组的有机污染物排放情况还鲜 见相关报道。

因此,笔者以某台 200 MW CFB 锅炉机组为研 究对象,以 CH₄、NMHCs 和多种典型 VOCs 为指标, 分析燃煤电厂排放烟气中有机物的分布,并对电厂 中燃煤、飞灰和炉渣 3 种固体样品中 CH₄、NMHCs 含量进行检测,以期更好地掌握 CFB 锅炉机组 VOCs 的排放特征。

1 试验方法

1.1 电厂概况

测试 CFB 锅炉机组为 200 MW, 配备德国产的 DKEH-IND31 型双抽汽机, 50WX23Z-109 型空冷 发电机; 东方锅炉生产的 DG410/9.81-9 型循环流 化床锅炉。炉内进行一级脱硫, 每台炉后配尿素法 选择性非催化还原(SNCR)+选择性催化还原 (SCR)脱硝, 石灰石-石膏湿法脱硫系统(WFGD), 袋式除尘器(FF)以及湿式电除尘器(WESP)。机 组燃用煤工业分析结果见表 1。

表1 入炉煤工业分析和元素分析 Table 1 Proximate and ultimate of incoming coal

			ing cour	we of meonin	und ununu	TTOAInut	Tuble			
/(MT 11)	0 /(N	元素分析/%					工业分析/%			
$- Q_{\rm net, ar} / (MJ \cdot kg^{-1})$	$- Q_{\text{net,ar}} (M)$	$\mathbf{S}_{t,ad}$	O_{ar}	\mathbf{N}_{ar}	H _{ar}	C _{ar}	$FC_{\rm ar}$	$V_{\rm daf}$	$A_{ m ad}$	M _t
18.50	18.	1.50	4.38	0.77	2.40	50.42	41.71	26.26	32.03	9.10

1.2 样品采集

烟气取样位置分别选取在 CFB 锅炉机组 SCR 入口 1、SCR 出口 2、FF 入口 3、WFGD 入口 4、WFGD 出口 5 和 WESP 出口 6 等 6 个位置。由于 SNCR 位 置处温度在 800 ℃以上,温度过高,采样设备易损, 因此未对 SNCR 系统烟气进行采集。燃煤样品从输 煤输送带处采集,炉渣从锅炉排渣口采集,飞灰采集 自 FF 袋式除尘器排灰口(每个灰斗采取相同质量 样品并混合均匀)。CFB 锅炉机组烟气流程和取样 位置如图 1 所示。为保证样品采集的实时性,在烟 气测试期间采集煤样、炉渣和飞灰样品。

1.3 样品分析

1.3.1 烟气中 VOCs 分析

使用便携式挥发性有机化合物分析仪(意大利

94

PCFElectronica 生产,型号 GC-FID)分析烟气中总 烃、CH4含量,同时通过差值法得到 NMHCs 浓度。 每次试验测定前采用含 CH₄和丙烷(C₃H₅)的混合 标准气体对仪器进行校准^[15]。测定 SCR 系统烟气 时采用玻璃内衬探针防止高温烟气损坏仪器。测试 中采用氧量测试仪对烟气中含氧量同步测试。为便 于计算,烟气中 VOCs 浓度均按 6% O2折算。典型 VOCs 检测参照 HJ 734—2014《固定污染源废气 挥 发性有机物的测定 固相吸附-热脱附/气相色谱-质 谱法》,采用内装 Carbopack B、Carboxen 1000 材料 吸附管直接采集烟气中 VOCs,为防止水蒸气干扰,采 样过程中全程对采样枪和管线进行恒温 120 ℃伴 热^{119]}。样品采集后立即用密封帽将采样管两端密 封,4 ℃避光保存,并于7 d 内分析。利用气相色谱-质谱联用仪(GC-MS)(美国安捷伦公司 7890B-5977B MSD) 对吸附管中 VOCs 组分进行分析,首先通 过热脱附设备在 300 ℃热解析吸附管 3 min,再由高 纯氦气携带出 VOCs 进入 GC-MS 系统进行分析。

为保证试验可靠性,试验过程中每个采样点均进行3次采样,计算各 VOCs浓度,然后求平均值。 1.3.2 固体样品中 VOCs分析

取固体样品(煤样、飞灰、炉渣)采用热重分析 仪进行热解,以20℃/min 升温速度从30℃加热至 900℃,保持10min。以高纯氮气为载气,出口采用 2LTedlar 袋对挥发气体进行收集^[20]。再通过便携 式挥发性有机化合物分析仪对气袋中 CH₄和 NMHCs含量进行分析。分析热解逸出气中 VOCs 浓度,然后计算处相应固体样品中 VOCs 浓度。

为保证试验可靠性,试验过程中每份固样品分成相同的3份,并对其进行热解分析,计算各 VOCs 浓度,然后求平均值。

2 结果与讨论

2.1 烟气中 CH₄和 NMHCs 分布

CFB 锅炉机组 100%和 50%负荷下各采样点烟 气中 CH₄和 NMHCs 质量浓度分布如图 2 所示。由 图 2 可知,100%负荷时 SCR 入口处烟气中 CH₄和 NMHCs 质量浓度分别为 0.65 和 6.63 mg/m³,与史 晓宏等^[15]和 LIU 等^[21]研究中燃煤锅炉有机物排放 值相比较低。这主要是由于 CFB 锅炉机组本身燃 烧温度在 850~900 ℃,相比燃煤机组低,且采用炉 内喷钙方式进行脱硫,燃烧室中石灰石和已发生脱 硫反应生成的 CaSO₄大粒子对有机物分子有一定吸 附作用,造成燃尽物中挥发的有机物减少。此外, CFB 锅炉机组配备的 SNCR 脱硝系统,在炉后进行 尿素喷射,也会造成部分有机物分子与烟气中 NH₃ 反应导致部分 VOCs 分解。

图 2 CFB锅炉机组烟气中 CH₄和 NMHCs 分布

Fig.2 Distribution of CH4 and NMHCs in flue gas of CFB boiler

不同负荷下,烟气中 NMHCs 质量浓度远高于 CH₄质量浓度,这是由于 CH₄是可燃性气体,随着燃 煤挥发出来后,大部分在锅炉中燃烧分解成 CO2和 H₂O,只有极少部分随烟气外溢。此外,100%负荷 下烟气中 VOCs 总量要高于 50%负荷时。这主要是 由于负荷降低时,燃用煤随之减少,导致燃料分解的 有机物含量降低,同时低负荷时,烟气在锅炉中滞留 时间会相对延长,更多有机物参与高温燃烧反应分 解,造成有机物排放量降低。经过处理后不同负荷 下 CH₄最终质量浓度为 0.14~0.18 mg/m³, NMHCs 质量浓度为 1.05~1.43 mg/m³。目前, GB 13223— 2011《火电厂大气污染排放准》中并未明确规定 VOCs的排放限值,而现行的一些国家、行业和地方 标准中上海市对 VOCs 排放限值要求最严格, DB 31/872—2015《印刷业大气污染物排放标准》、DB 31/881-2015《涂料、油墨及其类似产品制造工业 大气污染物排放标准》以及 DB 31/859—2014《汽车 制造业(涂装)大气污染物排放标准》等不同行业规 定 VOCs 排放限值在 15~100 mg/m³。因此, CFB 锅 炉机组排放的 VOCs 质量浓度远低于标准要求。

2.2 不同烟气处理设施的烟气总 VOCs 处理效率

CFB锅炉机组 100%和 50%负荷下不同烟气处 理设施的烟气总 VOCs 处理效率如图 3 所示。由图 3 可知,不同烟气处理设施对烟气中总 VOCs 的处理 效率不同,其中 SCR 脱硝系统和 FF 袋式除尘器处 理效率较高。SCR 脱硝系统对烟气中总 VOCs 的处 理效率可达 41.11%~48.63%;FF 袋式除尘器对烟 气中总 VOCs 的处理效率可达 45.56%~46.29%; WFGD 脱硫系统对烟气中总 VOCs 的处理效率为 26.06%~34.81%,WESP 湿式除尘器对烟气中总 VOCs 的处理效率仅为 8.52%~14.39%。这主要是 洁净煤技术

由于 SCR 脱硝装置中含有 V₂O₅、WO₃、MoO₃等活性 催化成分,导致 VOCs 成分被催化氧化分解成 CO₂ 和H₂O^[22]。而 FF 袋式除尘器的高效处理效率是由 于烟气经过除尘器时温度大幅降低,导致大量有机 物分子吸附至粉尘等大颗粒物表面,经过除尘器滤 袋时随粉尘脱附。而后,随着烟气流经 FGD 装置, 烟气温度降至 50 ℃左右,部分 VOCs 被脱硫浆液冲 刷溶解进入吸收塔内,导致烟气中 VOCs 进一步下 降。经过 WESP 湿式除尘器时,烟气中 VOCs 含量 很低,且烟气中 VOCs 和部分被飞灰吸附的 VOCs 受 极板静电排斥作用再次释放到烟气中,致使 WESP 处理效果不明显。

总之,烟气经过全部污染物处理设施后,通过烟 囱排放的总 VOCs 质量浓度为 1.19~1.61 mg/m³,协 同脱除效率为 77.88%~78.64%,可知现有烟气处理 设施协同脱除效率,可以满足相应排放要求。

2.3 固体样品中 CH₄和 NMHCs 质量分数

对 CFB 锅炉机组入炉煤、炉渣和飞灰 3 种样品中 CH₄和 NMHCs 质量分数进行分析,结果见表 2。可

知煤样中 CH₄质量分数高于 NMHCs, 而总 VOCs 质 量分数为 49 979.65 mg/kg,煤中总 VOCs 质量分数 与其挥发分相关,挥发分越高,总 VOCs 质量分数越 高^[23]。而炉渣中 VOCs 质量分数与燃烧工况和燃 烧温度相关, CFB 锅炉燃烧温度相对燃煤锅炉较 低,会产生较多的不完全燃烧,从而增加灰渣中 NMHCs 质量分数。因此 CFB 锅炉燃烧后炉渣中总 VOCs 质量分数相对值高于燃煤锅炉。飞灰和炉渣 中总 VOCs 质量分数相对较低,这主要是由于煤在 炉膛内高温燃烧使得煤中 95% 以上 CH₄和 NMHCs 燃烧分解为 CO,和H,O,导致飞灰和炉渣内只残余 了少量 VOCs。此外,与低负荷运行条件下相比,高 负荷运行状态下炉渣和飞灰样品产生的 CH₄和 NMHCs 质量分数偏高,结合高负荷运行条件下烟气 中含有更多 VOCs 是由于高负荷下所需燃煤量相对 较多。

 Table 2
 CH₄ and NMHCs mass fraction in solid samples

样品 负荷/%	各 古/M	CH4质量分数/	NMHCs 质量分数/
	贝何/%	$(mg \cdot kg^{-1})$	$(mg \cdot kg^{-1})$
煤样		28 945.13	21 034.52
炉渣	100	273.50	683.22
飞灰	100	432.66	918.38
炉渣	50	176.93	455.23
飞灰	50	389.40	778.12

2.4 典型 VOCs 在电厂的分布

为了深入了解电厂 VOCs 排放特征,根据 HJ 734—2014《固定污染源废气 挥发性有机物的测 定 固相吸附-热脱附气相色谱-质谱法》,对 VOCs 组分的沿程变化进行检测。100%负荷下的 VOCs 分布情况见表 3。

表 3 CFB 锅炉机组典型 VOCs 质量浓度分布

Table 3	Typical VO	OCs mass	concentration	distribution	of	CFB	boiler	unit
	- JPress , s		eomeenen aeron		~	~~~	~~~~	

西日			VOCs 质量浓度	$E/(\mu g \cdot m^{-3})$		
坝日	SCR 入口	SCR 出口	FF 入口	WFGD 入口	WFGD 出口	WESP 出口
正己烷	365.77	217.83	232.65	149.24	76.09	88.73
苯	544.90	208.56	177.76	140.12	89.00	62.52
正庚烷	17.86	3.34	_	_	_	_
甲苯	634.98	560.45	776.39	338.67	120.55	54.22
环戊酮	5.99	2.87	0.24	_	_	_
乙苯	38.90	23.65	17.44	21.67	12.89	5.40
对/间二甲苯	66.87	54.22	30.79	19.08	24.09	15.47
2-庚酮	11.86	3.98	0.65	0.16	_	_
苯乙烯	154.86	133.98	213.83	186.33	89.21	43.76
邻二甲苯	65.97	43.88	23.64	20.43	18.32	10.65
苯甲醚	19.65	10.43	8.66	4.23	_	_
苯甲醛	1.33	0.92	0.33	_	_	_

		2	买表			
西日			VOCs 质量浓度	$(\mu g \cdot m^{-3})$		
坝日	SCR 入口	SCR 出口	FF 入口	WFGD 入口	WFGD 出口	WESP 出口
1-癸烯	8.56	3.86	2.09	_	_	_
2-壬酮	21.10	10.03	8.99	4.74	2.99	3.06
1-十二烯	18.09	21.32	33.09	24.10	15.85	5.77
合计	1 976.69	1 299.32	1 525.98	908.61	448.99	289.58

注:一表示低于检出限。

由表3可知,CFB锅炉机组烟气中共检出15种 VOCs,其中以正己烷、苯、甲苯、苯乙烯为主。SCR 入口处检出的VOCs质量浓度为1976.69 µg/m³ (≈1.98 mg/m³),而通过便携式挥发性有机化合物 分析仪检出的NMHCs质量浓度为6.63 mg/m³,这 是由于HJ734—2014可以分析23种VOCs组分,说 明烟气中仍有大量VOCs成分未分析出来,有待进一 步检测。在检出的15种VOCs中,WESP出口VOCs 质量浓度合计289.58 µg/m³,经过全部污染物治理设 备后总体去除率为85.35%,这与第2.3节去除率基本 相当,进一步说明现有烟气处理设施整体对VOCs处 理效果良好。

将 WESP 出口(烟囱入口)测得的浓度较高的 VOCs 组分及浓度,与报道的一些燃煤电厂测试结 果作为对比,结果见表4。

表 4 本文结果与已有文献现场测量结果对比 Table 4 Comparison between the results in this paper and the field measurement results in previous literatures

		VC)Cs 质量	浓度/(µg	$\cdot m^{-3}$)		
来源	苯	甲苯	乙苯	对/间二 甲苯	苯乙烯	邻二 甲苯	正己 烷
本文	62.52	54.22	5.40	15.47	43.76	10.65	88.73
文献[15]	19.59	1.57	0.20	0.26	0.23	0.22	0.56
文献[23]	100.40	11.82	3.05	_	0.84	1.81	—
文献[24]	4.37	10.88	4.28	9.17	0.71	5.05	_
文献[25]	147.1	845.6	53.8	64.7	—	58.5	_

由表4可知,各燃煤机组排放的主要 VOCs 组 分基本相同,主要是苯、甲苯、乙苯、对/间二甲苯、苯 乙烯、邻二甲苯等苯系物(碳原子数 C≥6)。这主要 是由于碳原子数较高的苯环化合物相对稳定的化学 结构在反应过程中不易被氧化,质量分数较高。此 外,本文测试结果显示 CFB 锅炉机组排放的正己烷 含量较高,而其他文献中均显示燃煤机组无正己烷 排放或排放量较低。这主要是由于 CFB 锅炉特有 的低温燃烧导致煤中释放的烃类化合物并不能完全 燃烧分解,导致一部分直接释放;同时 CFB 锅炉燃 用煤中相应化合物含量较高,造成正己烷含量相对 较高。

3 结 论

1)100%和 50%负荷下, CFB 锅炉机组 SCR 入 口处烟气中 CH_4 和 NMHCs 质量浓度分别为 0.65 mg/m³和 6.63 mg/m³,经过一系列烟气处理装 置处理后 CH_4 质量浓度分别为 0.14~0.18 mg/m³, NMHCs 质量浓度为 1.05~1.43 mg/m³。煤样中总 VOCs 质量分数为 49 979.65 mg/kg, 而煤在炉膛内 高温燃烧使得煤中 95%以上 CH_4 和 NMHCs 燃烧分 解为 CO_2 和 H_2O ,致使飞灰和炉渣内只残余少量 VOCs。

2) SCR 脱硝系统和 FF 袋式除尘器对烟气中 VOCs 处理效率较好, SCR 脱硝系统对烟气中总 VOCs 的处理效率可达 41.11%~48.63%, FF 袋式除 尘器对烟气中总 VOCs 处理效率可达 45.56%~ 46.29%。经过全部污染物治理设备后,通过烟囱排 放的总 VOCs 质量浓度为 1.19~1.61 mg/m³, 总 VOCs 协同脱除效率为 77.88%~78.64%, 现有烟气 处理设施整体脱除效果可以满足相应排放要求。

3) CFB 锅炉机组烟气中共检出 15 种 VOCs 组 分,其中以苯、甲苯、乙苯、对/间二甲苯、苯乙烯、邻 二甲苯等碳原子数不小于6的苯系物为主。与燃煤 机组不同, CFB 锅炉燃烧温度较低,煤中烃类化合 物直接释放,导致烟气中正己烷含量较高。

参考文献(References):

- [1] 刘春玲. 能源消费低碳化的金融支持研究[D].咸阳:西北农林 科技大学,2018.
- [2] 李都峰. 基于污染物总量控制的能源消费总量分配优化研究 [D].吉林:吉林大学,2015.
- [3] 孙雪丽,朱法华,王圣,等. 燃煤电厂颗粒物超低排放技术路线选择[J].环境工程技术学报,2018,8(2):129-136.
 SUN Xueli,ZHU Fahua, WANG Sheng, et al. Technical route selection of ultra-low particulate emissions from coal-fired power plants [J]. Journal of Environmental Engineering Technology, 2018,8(2):129-136.
- [4] 车凯,郑庆宇,韩忠阁,等. 燃煤电厂痕量元素协同脱除及排放
 [J].中国电力,2019,52(4):161-166.
 CHE Kai,ZHENG Qingyu,HAN Zhongge, et al. Research on co-

洁净煤技术

removal and emission of trace elements in the coal-fired power plant[J].Electric Power,2019,52(4):161-166.

[5] 李军状,杨勇平,朱法华,等.SCR 高脱硝效率燃煤发电机组逃
 逸氨分布特性实测研究[J].中国电机工程学报,2021,41
 (10):3447-3453,3670.

LI Junzhuang, YANG Yongping, ZHU Fahua, et al. Actual measurement study on escaped ammonia distribution with SCR high denitration efficiency of coal – fired unit [J]. Proceedings of the CSEE, 2021, 41(10): 3447 - 3453, 3670.

- [6] 芦海云,陈爱国,郜丽娟,等.热重-红外联用研究上湾煤中低 温热解行为[J].煤炭转化,2015,38(3):32-35.
 LU Haiyun,CHEN Aiguo,GAO Lijuan. Study on low-temperature pyrolusis of Shangwan coal with TG-FTIR[J].Coal Conversion,
- 2015,38(3):32-35.
 [7] ZHU P,LUO A,ZHANG F, et al. Effects of extraditable compounds on the structure and pyrolysis behaviours of two Xinjiang coal
 [J]. Journal of Analytical and Applied Pyrolysis, 2018, 133: 128-135.
- [8] 程杰. 燃煤电厂挥发性有机污染物排放机理及脱除研究[D]. 北京:华北电力大学,2019.
- [9] 刘定超,金伟,惠希东,等.石油焦燃烧过程中影响多环芳烃生成的因素分析[J].华东理工大学学报(自然科学版),2018,44 (5):631-637.

LIU Dingchao, JIN Wei, HUI Xidong, et al. Influencing factors of polycyclic aromatic hydrocarbons formation during petroleum coke cmobustion [J]. Journal of East China University of Science and Technology (Natural Science Edition), 2018, 44 (5): 631-637.

 [10] 崔进,刘成鑫,陈姗,等.气袋采样/热脱附-气相色谱-质谱法 检测儿童地垫中 35 种挥发性有机物[J].分析试验室,2020, 39(6):700-705.

CUI Jin, LIU Chengxing, CHEN Shan. Determination of 35 volatile organic compounds in children playmat by bag sampling/ thermodesorption – gas chromatography – mass spectrometry [J]. Analytical Aboratory, 2020, 39(6):700–705.

- [11] 梁小明,孙西勃,徐建铁,等.中国工业源挥发性有机物排放清单[J].环境科学,2020,41(11):4767-4775.
 LIANG Xiaoming,SUN Xibo,XU Jiantie. et al.Industrial volatile organic compounds (VOCs) emission inventory in China [J].Environmental Science,2020,41(11):4767-4775.
- [12] 高建强,宋铜铜,张雪.循环流化床锅炉机组碳排放特性分析 与计算[J].动力工程学报,2021,41(1):14-21.
 GAO Jianqiang,SONG Tongtong,ZHANG Xue.Analysis and calculation on carbon emission characteristics of CFB boiler units
 [J].Journal of Power Engineering,2021,41(1):14-21.
- [13] HONG Feng, CHEN Jiyu, WANG Rui, et al. Realization and performance evaluation for long-term low-load operation of a CFB boiler unit[J]. Energy, 2021, 70(8):214-220.
- [14] 严谨, 卢啸风, 郑雄, 等.600 MW 超临界循环流化床锅炉给煤 横向扩散系数的试验研究[J]. 动力工程学报, 2021, 41(7): 525-532.

YAN Jin, LU Xiaofeng, ZHENG Xiong, et al. Experimental study on transverse diffusion coefficient of coal feed in 600 MW supercritical circulating fluidized bed boiler[J].Journal of Power Engineering, 2021, 41(7):525-532.

 [15] 史晓宏,刘俊,廖海燕,等.燃煤电厂烟气中挥发性有机物的分布规律及排放特性研究[J].环境污染与防治,2021,43(4): 405-410.

SHI Xiaohong, LIU Jun, LIAO Haiyan, et al. Study on distribution and emission characteristics of volatile organic compounds in flue gas of coal-fired power plant [J]. Environmental pollution and prevention, 2021, 43(4):405-410.

- [16] 徐静颖,卓建坤,姚强,等.燃煤有机污染物生成排放特性与采 样方法研究进展[J].化工学报,2019,70(8):2823-2834.
 XU Jingying,ZHUO Jiankun,YAO Qiang, et al. Study on emission characteristics of organic pollutants from coal burning [J]. Journal of Chemical Industry and Engineering, 2019, 70(8): 2823-2834.
- [17] 孙树睿,关卫省,贾静,等.脱硫设施对 2 种燃煤锅炉排放 VOCs 的影响[J].环境工程学报,2021,15(5):1625-1633,1478.

SUN Shurui, GUAN Weisheng, JIA Jing, et al. Effects of desulfurization facilities on VOCs emission from two kinds of coal-fired boilers[J]. Chinese Journal of Environmental Engineering, 2021, 15(5):1625-1633,1478.

- [18] 李津津,陈扉然,马修卫,等.燃煤有机污染物排放及其控制技术研究展望[J].化工进展,2019,38(12):5539-5547.
 LI Jinjin, CHEN Feiran, MA Xiuwei, et al. Research prospect of emission and control technology of organic pollutants from coal burning[J]. Chemical Industry and Engineering Progress, 2019, 38(12):5539-5547.
- [19] 徐静颖. 典型煤种热解与燃烧过程挥发性有机物生成与排放 特性[D].北京:清华大学,2019.
- [20] 王志昌. 宁东煤中有机质的分子组成结构特征及定向转化反应的基础研究[D].郑州:郑州大学,2019.
- [21] LIU J, WANG T, CHENG J, et al. Distribution of organic compounds in coal-fired power plant emissions [J]. Energy Fuels, 2019,33(6):5430-5437.
- [22] 程杰,汪涛,张永生,等.烟煤及其逸出气中挥发性有机化合物研究[J].华北电力大学学报(自然科学版),2019,46(3):97-102.
 CHENG Jie, WANG Tao, ZHANG Yongsheng, et al. Study on volatile organic compounds in bituminous coal and its escape gas
 [J]. Journal of north China electric power university (Natural Science Edition),2019,46(3):97-102.
- [23] DOS Santos C Y M, DE AIMEIDA Azevedo D, DE AQUINO Neto F R. Atmospheric distribution of organic compounds from urban areas near a coal-fired power station [J]. Atmospheric Environment, 2004, 38(9):1247-1257.
- [24] FERNÁNDEZ-MARTÍNEZ G, LÓPEZ-VILARIÑO J M, LÓPEZ-MAHÍA P, et al. Determination of volatile organic compounds in emissions by coal-fired power stations from spain[J]. Environmental Technology, 2001, 22(5):567-575.
- [25] SHI J, DENG H, BAI Z, et al. Emission and profile characteristic of volatile organic compounds emitted from coke production, iron smelt, heating station and power plant in Liaoning Province, China [J]. Science of the Total Environment, 2015, 515:101-108.