大型燃煤机组 SCR 装置超低排放改造流场优化

郑 妍,姚 宣,王冬生,陈训强,李晓金

(北京国电龙源环保工程有限公司北京市火电厂烟气净化工程技术研究中心,北京 100039)

摘 要:基于燃煤机组 SCR 系统普遍出现的性能不稳定、氨逃逸超标等问题,以具有代表性的某 660 MW 超临界煤粉锅炉 SCR 脱硝系统为例,拟结合喷氨格栅和驻涡型喷氨混合器特点,进行多维度 的驻涡脱硝喷氨混合装置优化改造研究,并分析了烟气在烟道各位置流动、变化和相互混合的过程, 提出了基于分级多效混合、多排分区、强制整流的优化方案。依据 CFD 模拟计算结果,提出的 SCR 脱 硝系统的流场优化方案可以充分实现流场分布和 NH₃/NO₄混合分布均匀的要求,即反应器内第 1 层 催化剂入口截面 NH₃/NO₄混合不均匀性低于 5%;烟气气流速度不均匀性低于 15%;烟气到达第 1 层 催化剂的入射角小于 10°。对原脱硝装置进行相应改造后,脱硝装置出口 NO₄浓度总体分布均匀, 平均浓度低于超低排放限值,且氨逃逸浓度远低于设计值 3×10⁻⁶,现场实测结果进一步验证了改 造方案的可靠性。流场升级的改造方法对于指导大型燃煤机组 SCR 系统的超低排放改造具有借 鉴意义。

关键词:SCR 脱硝;多排分区驻涡喷氨;CFD 模拟;分级多效混合;强制整流;氨逃逸;超低排放 中图分类号:X773 文献标志码:A 文章编号:1006-6772(2021)05-0212-06

Flowfield optimization of SCR system in large size coal-fired units NO, ultra-low emission modification

ZHENG Yan, YAO Xuan, WANG Dongsheng, CHEN Xunqiang, LI Xiaojin

(*Beijing Engineering Research Center of Power Station Gas Cleaning*, *Beijing Guodian Longyuan Environmental Engineering Co.*, *Ltd.*, *Beijing* 100039, *China*) **Abstract**: Due to the problems of unstable SCR performance and excessive ammonia slip in coal-fired power plants, taking the SCR denitration system of a representative 660 MW supercritical pulverized coal boiler as an example, and combined with the characteristics of ammonia injection grid and stationary vortex ammonia injection mixer, the multi-dimensional optimization and transformation of the stationary vortex denitration ammonia injection mixing device was studied, and the process of flue gas flow, change and mutual mixing at various positions in the flue was analyzed. An optimization based on multi-effect staged mixing, zoning vortex ammonia injection and forced rectification was proposed. According to the CFD calculation results, the optimized design scheme of the SCR reactor system proposed in this paper can fully achieve the requirements of uniform flow field distribution and NH₃/NO_x mixed distribution. At the cross section in the first catalyst layer inlet, the coefficient of variance for flue gas flow velocity is less than 15%, and coefficient of variance for NH₃/NO_x mixing is less than 5%. The incident angle of the flue gas reaching the first catalyst layer is less than 10°. After the modification of the SCR reactor device, the overall distribution of NO_x concentration at the outlet of the denitrification device is uniform, the average concentration is lower than the ultra-low emission limit, and the ammonia escape concentration value is much lower than the design value 3×10^{-6} . The practical test results further verify the reliability of optimization method. Therefore, the upgrade idea and theoretical research method are of great significance to guide the ultra-low emission transformation of SCR system of large coal-fired units.

Key words: SCR reactor; zoning vortex ammonia injection system; CFD simulation; multi-effect staged mixing; rectifier; ammonia slip; ultra-low emission

基金项目:国家能源投资集团科技创新项目基金资助项目(GJNY-19-26)

引用格式:郑妍,姚宣,王冬生,等.大型燃煤机组 SCR 装置超低排放改造流场优化[J].洁净煤技术,2021,27(5):212-217. ZHENG Yan,YAO Xuan,WANG Dongsheng, et al. Flowfield optimization of SCR system in large size coal-fired units NO_x ultra-low emission modification[J].Clean Coal Technology,2021,27(5):212-217.

收稿日期:2020-05-27;责任编辑:白娅娜 DOI:10.13226/j.issn.1006-6772.20052704

作者简介:郑 妍(1989—),女,四川自贡人,工程师,研究方向为洁净煤技术、污染物控制。E-mail:12062255@ chnenergy.com.cn

0 引 言

近年来,国家对煤电行业全面落实"节约、清 洁、安全"的能源战略方针,燃煤机组污染物排放标 准不断提高。2015年7月环境能源局、发改委和环 保部联合发文,要求燃煤电厂全面实施超低排放,即 在6%基准氧含量条件下,NO_x排放质量浓度低于 50 mg/Nm³,这意味着脱硝设备要达到接近或超过 90%的脱硝效率,对 SCR 脱硝系统长期可靠运行带 来极大挑战。

经验表明 SCR 装置的脱硝效率通常不高于 85%^[1-4]。在同等催化剂条件下,脱硝装置为达到 更高脱除效率,对还原剂/烟气均匀混合程度的要求 呈指数型上升^[5-6]。提升还原剂与烟气的混合质 量、提高脱硝系统对来流工况的抗干扰性是实 现 SCR 稳定超低排放的两大核心要素^[7]。因此亟 需开发适用于脱硝超低排放的喷氨混合装置,结合 烟道内整流构件设计,提升烟气流场的均匀性和适 应性。目前国内在役实现"超低排放"的燃煤机组 普遍出现性能不稳定、氨逃逸超标等问题[8-10],根本 原因在于烟道截面大,而还原剂喷射量相比烟气量 极小,很难实现充分混合,使得反应器内部分区域氨 供应不足,而部分区域氨过量,导致整体效率和氨逃 逸不达标,造成空预器压差过高、堵塞等问题。对于 负荷频繁波动的调峰机组,氨的喷射无法适应烟气 来流变化,上述问题会更加突出^[11-12]。

目前还原剂喷射装置有 2 种技术:① 喷氨格 栅:汤元强等^[13]在 SCR 工艺性能研究过程中采用 喷氨格栅的方式,实现氨气和烟气的均匀掺混,喷嘴 口径小、数目多,高温高尘条件下易发生飞灰堵塞, 不具备调整来流均匀性的能力。② 驻涡型喷氨混 合器:杨超等^[14]采用基于驻涡混合机理的还原剂混 合装置探究氨气混合效果,喷管数目少、口径大,具 备调整来流均匀性的能力,能主动调节来流氮氧化 物浓度、速度、温度的偏差。

雷达和金保升^[15]利用经冷态模型校验过 的 SCR 数值模型,研究喷氨格栅处烟气速度场 对 SCR 均流与还原剂混合性能的影响,结果发现采 用喷氨格栅方式的 SCR 技术较依赖导流板的布置 方式和布置位置,导流板结构不同会对流场产生不 同作用,并影响不同负荷下烟气混合效果。李壮扬 等^[16]以某电厂 660 MW 亚临界燃煤机组 SCR 烟气 脱硝系统为研究对象,对 SCR 反应器内烟气流动以 及喷氨分布均匀性进行数值模拟研究,研究发现优 化调整喷氨格栅烟道内均流部件对速度、浓度均匀 性有显著改善作用,通过分析流场不均匀性得到的 分区喷氨方法能够进一步优化 NH₃在烟道中分布, 因此整体系统喷氨控制精度需求较高,运行较复杂。 此外,喷氨格栅管长期受烟气直接冲击造成喷氨格 栅管磨损严重。现有的喷氨格栅管一般直接钻孔供 喷氨使用,磨损较严重易发生喷氨不均匀、喷孔堵塞 等问题。驻涡型喷氨混合器则不能实现分区调控。

针对上述问题,吸取喷氨格栅的优点和驻涡型 喷氨混合器特点,研发多维度驻涡型脱硝喷氨混合 装置,利用较少的大口径喷嘴,实现大截面烟道内烟 气与还原剂的均匀掺混,同时具备调整来流均匀性 的能力。通过设置整流装置,进一步调整速度场均 匀性,避免偏流对混合及脱硝反应造成影响,充分发 挥催化剂的能力,避免堵塞、磨损。

1 计算模型

1.1 机组情况

本文以某 660 MW 国产燃煤超临界参数汽轮发 电机组脱硝装置改造为例开展研究。脱硝系统采用 选择性催化还原脱硝技术(SCR),SCR 烟气脱硝技 术的还原剂选用液氨蒸发工艺,在设计及校核煤种、 锅炉最大工况(BMCR)、100%烟气量条件下,脱硝 效率不低于 91.7%。脱硝系统运行时入口 NO_x质量 浓度 600 mg/Nm³,脱硝反应器出口处烟气中 NO_x质 量浓度不大于 50 mg/Nm³,1 台机组配置 2 台脱硝 反应器,每台反应器催化剂层数按 2+1 设置(2 层运 行,预留 1 层备用,预留层布置在反应器底部),烟 气垂直向下通过催化块层。反应器进口烟温约 373 ℃,因喷入混合气以及烟道、反应器散热,出口 烟温约 369 ℃。

1.2 计算模型

机组原脱硝反应器、烟道三维建模根据实际烟 道结构尺寸构建如图1所示,充分考虑导流板、喷氨 管、驻涡型喷氨混合器、整流格栅及催化剂层对烟气 流场和烟气组分的影响。计算整体范围从省煤器出 口到空气预热器进口,计算模型人口与省煤器出口 烟道连接,计算模型出口与空预器进口烟道连接。 模型按照实际尺寸设置,反应器长宽高分别为11.1、 15.1和19.53 m,喷氨处烟道尺寸 3.1 m×15.15 m。

原脱硫装置在运行过程中出现氨氮分布不均, 过量喷氨,下游催化剂堵塞、磨损,空预器堵塞等问 题。针对原有系统还原剂混合不均匀及速度场不均 问题,提出改造方案为:入口烟道设整流装置;采用 多维度驻涡喷氨混合装置,反应器顶部设整流装置, 具体结构如图2所示。 洁净煤技术

通过计算流体力学(CFD)方法对某 660 MW 火 电机组 SCR 脱硝系统改造前后进行数值模拟对 比^[17-19],研究烟气在烟道各位置流动、变化和相互 混合的过程,同时研究驻涡型喷氨混合器对烟气流 场及脱硝还原剂分布混合的效果,在计算结果的基 础上进行针对性优化,以设计适合催化剂安全、高 效、稳定反应的 SCR 烟道结构。

1.3 模型设置

计算中使用的基本假设包括^[20-21]:① 计算负 荷为 100% BMCR;② 烟道模型进口的烟气速度在进 口截面均匀分布(16.18 m/s),且温度分布均匀 (373 ℃);③ 烟道壁面绝热,且内部没有热源和热 沉,因此,未喷氨时烟道内温度处处均匀;④ 烟道模 型出口断面处压力分布均匀;⑤ 催化剂层和整流格 栅用多孔介质模型简化,用各向异性的方法对催化 剂层的阻力特性进行定义,采用 2+1 层催化剂床 层。湍流模型采用 Standard $k - \varepsilon$,壁面函数采 用 Standard wall functions。模型采用混合网格划分, 模型网格单元数约 150 万,在喷氨管和驻涡型喷氨 混合器采用非结构化网格,其他计算区域利用规则 的结构化网格。另外,在特殊区域对网格进行加密 处理,如导流板、喷氨管和驻涡型喷氨混合器等。烟 道模拟运行工况为 BMCR 100% 的烟气量,物性参 数、喷氨系统参数参考上述参数设定^[22],且各喷氨 支管流量相同。

2 计算结果分析

2.1 原脱硝系统计算结果

改造前烟道不同位置的 NH₃分布如图 3 所示。 原脱硝装置由于入口水平烟道设有张角较大的扩径 段,引起下游烟道左右侧烟气流量不均,进而造成脱 硝反应器左右侧出现较大的氨气分布偏差。当机组 负荷波动,脱硝入口来流条件变化时,来流扰动会驱 使还原剂氨分布的偏差进一步放大,进而造成脱硝 装置效率降低或氨逃逸排放过高。由于该装置喷氨 混合器后竖直混合段烟道较短,停留时间短,对还原 剂与烟气的混合要求更高。

2.2 优化改造方案计算结果

根据电厂需求,综合成本和效果分析,确定改造 方案如下:采取分级多效混合、多排分区、强制整流 的优化思路,在原脱硝装置内,通过升级驻涡喷氨混 合装置、增设竖井烟道顶部弯头扰流板,强化氨气与 烟气的混合,显著改善了催化剂人口还原剂的均匀 性;在脱硝反应器上部增设整流装置,改善反应器内 前后墙流速偏差,提高烟气流动的均匀性,缓解催化 剂表面积灰、磨损等问题;在入口烟道扩径段前设导 流板,调整该处的速度场,缓解侧部烟道积灰及喷氨 混合器前烟气偏流问题。

改造优化方案 NH₃分布模拟结果如图 4 所示, 可知无论是纵截面还是第 1 层催化剂入口, NH₃分 布均匀性较改造前显著提升。由于烟道截面较宽, 改造前单排喷氨装置覆盖面积有限,脱硝反应器前 后方向出现较大的氨气分布偏差。优化改造方案设 有 2 排涡流混合装置,可以实现对烟道截面喷氨的 分区控制,进而提高氨气在烟气中分布的均匀性,优 化喷氨系统调节性,且在下游增设扰流板,利用强制 扰流进一步加强氨气与烟气的混合,显著改善催化 剂入口还原剂的均匀性,从而达到提高脱硝效率、降 低氨逃逸的目的。

此外,烟气流场的组织是影响烟道阻力分布、速 度均匀性和烟气组分掺混程度的重要因素。受现场 情况限制,原脱硝烟道入口设有张角较大的扩径段, 导致烟气偏流严重。相比喷氨格栅,驻涡喷氨混合 装置本身具有整流效果,具备一定的负荷自适应性。 改造方案通过在脱硝装置进口烟道前设置导流叶 片,强制改善来流烟气分布的均匀性,使驻涡混合器 前端的截面速度分布相对均匀,均匀的速度场能够 提高驻涡型喷氨混合器的混合效果。为了保证进入 催化剂的速度场均匀,在脱硝反应器上部同时增设

整流装置。

改造后的烟气流线图如图 5 所示,可知烟气在 烟道内的流动较为平滑,进入脱硝反应器前,气流在 导流叶片和顶部扰流管作用下,经过整流格栅后,烟 气方向转为向下,速度方向较为一致,分布更加 均匀。

Fig.5 Streamline of the flue gas

2.3 优化改造结果

脱硝烟道反应器优化后,BMCR 工况下第1层 催化剂上表面的速度、烟气入射角度和氨浓度均值、 方差见表1。可知优化改造后速度分布的不均匀性 为6.6%,小于行业标准规定的15%;氨浓度分布的 不均匀性为4.9%,小于5%;烟气入射角小于10°, 全部满足超低排放要求的烟道流场设计要求。

表 1 改造后脱硝系统特征参数 Table 1 Characteristic parameters of the SCR

reactor system after optimization

项目		参数
速度分布	速度均值/(m・s ⁻¹)	4.27
	方差/(m・s ⁻¹)	0.28
	不均匀性/%	6.6
氨浓度分布	氨体积分数	2.47×10^{-4}
	方差	1.21×10^{-5}
	不均匀性/%	4.9
烟气入射角/(°)	最小	0
	平均	2.64
	最大	4.90
烟气系统阻力增量/Pa		60

为验证 CFD 理论研究结果的可靠性,对改造后 660 MW 机组脱硝装置进行现场测试。在 660 MW 满负荷运行工况下,沿脱硝反应器出口烟道的长度 方向取 6~7 个测孔,用网格法分别测量反应器出口 NO_x、氨逃逸浓度,结果如图 6、7 所示。

由图 6、7 可知,改造后脱硝装置出口 NO_x浓度 总体分布非常均匀,平均浓度低于超低排放限值,且 215

图6 实测脱硝装置出口 NO_x浓度

Fig.6 Measured NOx concentration at the outlet of the SCR reactor

图 7 实测脱硝装置出口氨逃逸浓度

Fig.7 Measured ammonia escape concentration at the outlet of the SCR reactor

氨逃逸浓度远低于设计值 3×10⁻⁶,说明经过流场优 化改造后,进入反应器时,烟气与还原剂混合均匀, 保证了脱硝效率,同时减少氨逃逸及还原剂耗量,减 缓下游空预器堵塞,降低机组运行维护费用。

3 结 论

1)针对某 660 MW 超临界煤粉锅炉脱硝系统研 究烟气和氨气在 SCR 脱硝反应器内的混合过程,针 对现有喷氨优化系统问题,提出了基于入口烟道设 整流装置,采用分级多效驻涡混合装置、反应器顶部 设整流装置的改造方案。

2) 依据 CFD 模拟计算结果,本文提出的 SCR 脱硝系统优化设计方案可充分实现流场分布和 NH₃/NO_x充分混合,即反应器内第1层催化剂入口 截面烟气速度不均匀性低于 15%;第1层催化剂的 烟气入射角低于 10°; SCR 反应器第1层催化剂所 在入口截面 NH₃/NO_x混合不均匀性低于 5%。

3) 原脱硝装置改造后,在脱硝装置出口进行网格化测量 NO_x浓度和氨逃逸浓度,验证了改造方案 的可靠性。本文提出的流场升级改造思路及方法对 指导大型燃煤机组 SCR 系统超低排放改造具有借 鉴意义。

参考文献(References):

- [1] 董建勋. 燃煤电厂 SCR 烟气脱硝试验研究及数学模型建立 [D].保定:华北电力大学,2007.
- [2] 孙克勤.选择性催化还原脱硝的理论及实验研究[D].南京: 南京理工大学,2007.
- [3] YANG Y M, LI J, HE H. Research and proposal on selective catalytic reduction reactor optimization for industrial boiler[J]. Journal of the Air & Waste Management Association, 2018, 68 (7): 737-754.
- [4] CHANG S, ZHUO J, MENG S, et al. Clean coal technologies in China: Current status and future perspectives [J]. Engineering, 2016,2(4):447-459.
- [5] 毛剑宏. 大型电站锅炉 SCR 烟气脱硝系统关键技术研究[D]. 杭州:浙江大学,2011.
- [6] 赵乾. SCR 烟气脱硝系统模拟优化及喷氨量最优控制[D].重 庆:重庆大学,2012.
- [7] 赵宗让. 电厂锅炉 SCR 烟气脱硝系统设计优化[J]. 中国电力,2005,38(11):69-74.
 ZHAO Zongrang. Design optimization of SCR system for coal-fired boilers[J]. Electric Power,2005,38(11):69-74.
- [8] 周昊. 大型电站锅炉氮氧化物控制和燃烧优化中若干关键性 问题的研究[D].杭州:浙江大学,2004.
- [9] LEE Changhee. Modeling urea-selective catalyst reduction with vanadium catalyst based on NH₃ temperature programming desorption experiment[J]. Fuel, 2016, 173(1):155-163.
- [10] RAMIS G, YI L, BUSCA G, et al. Adsorption, activation, and oxidation of ammonia over SCR catalysts [J]. Journal of Catalysis, 1995, 157(2):523-535.
- [11] SVACHULA J, FERLAZZO N, FORZATTI P, et al. Selective reduction of nitrogen oxides(NO_x) by ammonia over honeycomb selective catalytic reduction catalysts[J]. Industrial & Engineering Chemistry Research, 1993, 32(32):1053-1060.
- [12] 张彦军,高翔,骆仲泱,等. SCR 脱硝系统入口烟道设计模拟 研究[J]. 热力发电,2007,36(1):15-17.
 ZHANG Yanjun, GAO Xiang, LUO Zhongyang, et al. Simulation study on design of inlet flue duct for SCR denitrify cation system
 [J].Thermal Power Generation,2007,36(1):15-17.
- [13] 汤元强,吴国江,赵亮. SCR 脱硝系统喷氨格栅优化设计[J].
 热力发电,2013,42(3):58-62.
 TANG Yuanqiang, WU Guojiang, ZHAO Liang. Design optimization of ammonia injection grid in SCR reactor system[J].
 Thermal Power Generation,2013,42(3):58-62.
- [14] 杨超,张杰群,郭婷婷. SCR 烟气脱硝装置烟气流场数值模拟
 [J].东北电力大学学报,2012,32(1):66-70.
 YANG Chao, ZHANG Jiequn, GUO Tingting. Numerical simulation of the flow field in a SCR system[J]. Journal of North-

郑 妍等:大型燃煤机组 SCR 装置超低排放改造流场优化

east Dianli University, 2012, 32(1):66-70.

[15] 雷达,金保升.喷氨格栅处烟气速度场对高效 SCR 均流与还 原剂混合性能的影响[J].热能动力工程,2009,24(1): 113-119.

> LEI Da, JIN Baosheng. Influence of the flue gas velocity field at an ammonia – injection grid on uniform flows and reducing – agent mixing performance of a high efficiency SCR device [J]. Journal of Engineering for Thermal Energy and Power, 2009, 24 (1):113–119.

- [16] 李壮扬,苏乐春,宋子健,等.660 MW 燃煤机组 SCR 流场模拟 优化与喷氨优化运行[J].洁净煤技术,2017,23(4):47-52.
 LI Zhuangyang, SU Lechun, SONG Zijian, et al. Optimization of flow and ammonia injection by numerical simulation of SCR for a 660 MW coal-fired unit[J]. Clean Coal Technology 2017,23 (4):47-52.
- [17] LI M, YAN H, ZHOU J. Numerical simulation and optimization of flow field in the SCR denitrification system [C]//International Conference on Energy and Environment Technology. Guilin: IEEE, 2009:415-418.
- [18] JIN M C, CHOI J W, HONG S H, et al. Application of computa-

tional fluid dynamics analysis for improving performance of commercial scale selective catalytic reduction [J]. Korean Journal of Chemical Engineering, 2005, 23(1):43-56.

- [19] LIU X, TAN H, WANG Y, et al. Low NO_x combustion and SCR flow field optimization in a low volatile coal fired boiler[J]. Journal of Environmental Management, 2018, 220(15):30–35.
- [20] 雷达,金保升. 基于复相催化反应动力学的电站 SCR 系统三 维数值模型[J]. 燃烧科学与技术,2010,16(3):236-240.
 LEI Da, JIN Baosheng. 3 - D numerical model of a power station SCR system based on heterogeneous reaction kinetics[J].
 Journal of Combustion Science and Technology, 2010, 16(3): 236-240.
- [21] XU Y, ZHANG Y, LIU F, et al. CFD analysis on the catalyst layer breakage failure of an SCR-DeNO_x system for a 350 MW coalfired power plant[J]. Computers & Chemical Engineering, 2014, 69(3):119-127.
- [22] FAN Q X, WANG M X, GUAN X, et al. Optimal design of a SCR– DeNO_x system for a 300 MW coal-fired power plant[J]. Chemical industry and engineering progress, 2014, 33(10):2806–2814.