气化细粉灰预热无焰燃烧煤氮转化与 NO_x 排放特性

丁鸿亮^{1,2}.欧阳子区^{1,2}

(1.中国科学院大学工程科学学院,北京 100049;2.中国科学院工程热物理研究所,北京 100190)

摘 要:为实现煤化工固废——气化细粉灰的清洁高效利用,采用先进的煤粉自预热燃烧技术,在 30 kW 固体碳基燃料预热无焰燃烧试验平台上,针对不同预热温度、不同预热燃烧器当量比下的烟煤 经循环流化床气化后,细粉灰中氮的转化及 NO_x排放特性进行试验研究。结果表明,气化细粉灰能在 该试验系统上实现稳定的无焰燃烧。预热可明显改善气化细粉灰的燃烧特性改善具有重要作用。几 乎全部挥发分氮在预热燃烧器内的强还原性气氛下提前脱除,主要向 N₂、NH₃与 HCN 三种含氮物质 转化,焦炭氮为后续燃烧中 NO_x的主要来源。预热温度对预热过程中煤氮向 N₂的转化率影响显著, 预热燃烧器空气当量比直接关系煤氮向 N₂和 NH₃的转化率,且与焦炭氮析出情况密切相关。预热温 度和预热燃烧器空气当量比对 NO_x排放浓度及燃料氮向 NO_x转化率的影响效果差别明显。在预热温 度为 902 ℃、预热燃烧器空气当量比为 0.45 的条件下,NO_x排放浓度和燃料氮向 NO_x转化率最低,分 别为 83.02 mg/m³(6% O₂)和 5.94%。

关键词:气化细粉灰;循环流化床;预热;无焰燃烧;煤氮转化;NO,排放

中图分类号:TK16 文献标志码:A 文章编号:1006-6772(2021)03-0070-11

Fuel-N transformation and NO_r emission characteristics of coal gasification

fly ash during preheating process in the flameless combustion mode

DING Hongliang^{1,2}, OUYANG Ziqu^{1,2}

(1. School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China;

2. Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China)

Abstract: To achieve the clean and efficient utilization of the coal gasification fly ash, experimental studies which adopted advanced selfpreheating combustion technology were carried out on a 30 kW preheating flameless combustion test rig for solid carbon-based fuel. Fuel-N transformation and NO_x emission characteristics from fine ash of bituminous coal gasification fly ash under different preheating temperatures and primary air equivalence ratio were discussed. The results show that the coal gasification fly ash can achieve stable flameless combustion on this experimental system. The combustion characteristics of coal gasification fly ash are greatly improved after preheating. Almost all volatile–N is removed in advance under the strong reducing atmosphere in the self–preheated burner, and is mainly converted to three nitrogen–containing substances : N₂, NH₃ and HCN. Thus char–N is the main source of NO_x emission in subsequent combustion. During the preheating progress, preheating temperature has an obvious effect on the conversion of fuel–N to N₂, while the primary air equivalence ratio mainly affects the conversion rate of fuel–N to N₂, NH₃ and the nitrogen precipitation from char–N. The effects of preheating temperature and primary air equivalence ratio of preheated burner on NO_x emission concentration and conversion rate of fuel–N to NO_x are obviously different. The concentration of NO_x emission and conversion rate of fuel–N to NO_x both reach the lowest value when the preheating temperature is 902 °C and the primary air equivalence ratio of preheated burner is 0.45, which are 83.02 mg/m³(6% O₂) and 5.94%, respectively.

Key words: coal gasification fly ash; circulating fluidized bed; preheat; flameless combustion; fuel-N transformation; NO_x emission

引用格式:丁鸿亮,欧阳子区.气化细粉灰预热无焰燃烧煤氮转化与 NO_x排放特性[J].洁净煤技术,2021,27(3):70-80. DING Hongliang,OUYANG Ziqu.Fuel-N transformation and NO_x emission characteristics of coal gasification fly ash during preheating process in the flameless combustion mode[J].Clean Coal Technology,2021,27(3):70-80.

收稿日期:2021-02-05;责任编辑:张晓宁 DOI:10.13226/j.issn.1006-6772.SW21020501

基金项目:国家重点研发计划资助项目(2017YFB0602001);中国科学院青年创新促进会项目(2019148)

作者简介:丁鸿亮(1996—),男,内蒙古赤峰人,博士研究生,研究方向为煤炭清洁高效利用。E-mail:dinghongliang@iet.cn。 通讯作者:欧阳子区,副研究员,博士,研究方向为洁净煤燃烧技术。E-mail:ouyangziqu@iet.cn

0 引 言

我国丰富的煤炭探明储量中,低阶煤占比 大^[1-3]。气化残炭是低阶煤分级分质转化过程中产 生的副产品^[4],通过对其进一步的燃烧利用可避免 直接废弃造成的能源浪费与环境污染等问题,提高 煤炭资源的整体利用效率。但由于气化残炭具有挥 发分极低、着火和稳定燃烧较难等特点,现有的常规 煤粉锅炉通常难以实现深度处理。探索气化残炭的 稳定、高效、洁净燃烧技术,为其广泛应用提供新的 技术方案和理论支撑,已成为当前亟待解决的难题。

燃煤利用过程中产生的氮氧化物(NO_x)会对大 气环境造成严重污染[5-6]。由于煤粉在实际燃烧过 程中产生的 NO_x化学性质不稳定,且相应的化学反 应较复杂,因此对其控制效果不理想[5]。研究发 现,高浓度的氮氧化物易引发多种大气污染,如光化 学烟雾、酸雨等,同时也会对臭氧层造成破坏,加剧 温室效应^[6]。NO,也会危害人类健康,易引发肺部 疾病。我国环保部门针对燃煤污染物已陆续出台了 多项政策,并发布了相关规范文件,NO,减排任务势 在必行^[5]。目前除成熟度较高的脱氮技术^[7-9]外, 无焰燃烧(MILD)作为新型燃烧技术在 NO, 排放控 制上显现巨大潜力[10-11],近 30 年发展迅速。研究 结果表明[12-19],在无焰燃烧区域内,燃烧稳定性高, 燃烧温度分布均匀且峰值较低,无肉眼可见的火焰 锋面,NO_x排放水平较低。对于固体燃料,其实现无 焰燃烧的主要方式是以燃气或蓄热体中的高温低氧 空气作助燃气体[17-18],也可利用常温空气高速射流 卷吸烟气方式来满足无焰燃烧条件[19-21]。 Weidmann 等^[22]在中试试验平台(230 kW_{th})上研究 了煤粉的无焰氧化过程,证实了无焰燃烧技术能提 高燃料燃烧的均匀性,通过 OH 化学成像和 LDV 表 征手段描述了煤粉无焰氧化过程中反应区域拓扑和 流场模型,发现富氧工况下较低温度可降低 HCN 的 释放和 NO_x形成。Stadler 等^[15]研究表明, 与火焰燃 烧相比,褐煤与烟煤无焰燃烧状态下产生的热力型 NO,含量降低约 50%。Saha 等^[23]在立式炉上研究 了无焰燃烧模式下 CO2射流速度对维多利亚褐煤燃 烧特性的影响,结果表明,射流雷诺数与煤挥发分释 放速率呈正相关,二者增加会造成褐煤总碳消耗速 率明显下降。但有关气化细粉灰无焰燃烧模式下的 燃料特性、煤氮转化及 NO, 排放却鲜有报道。

中国科学院工程热物理研究所于 2007 年提出 适用于固体燃料高效低氮燃烧的煤粉高温燃烧方 法^[23],并据此研发出煤粉自预热燃烧工艺^[24],打破

了传统燃烧模式下燃料高效燃烧与低 NO_x排放的相 互制约。燃料首先在预热燃烧器中进行部分燃烧与 部分气化反应释放热量,实现自身预热,无需外部热 源.随后在燃烧过程中结合分级燃烧技术进一步降 氮。在 30 kW 煤粉自预热燃烧小试^[25-27]、MW 级煤 粉自预热燃烧中试^[28-29]等试验装置上实现了多种 燃料稳定的预热燃烧,研究结果均证明煤粉自预热 燃烧技术具有实现燃料清洁高效燃烧的潜力,揭示 了预热促进燃料改性和活化的内在机制。在煤粉自 预热燃烧技术工业化应用方面,中国科学院工程热 物理研究所开发了 20~60 t/h 的煤粉预热燃烧锅 炉,展现出煤种适应性广、负荷调节范围大和 NO,排 放低等技术优势[30]。煤气化的副产物——气化细 粉灰,具有挥发分极低、热值小、可燃性差和反应特 性差等特点,常规燃烧技术难以利用,且经煤气化处 理后,其物理结构和化学特性较原燃料发生很大变 化。目前采用煤粉自预热燃烧技术实现气化细粉灰 的稳定、高效和清洁燃烧以及预热过程中的煤氮转 化和 NO.生成特性研究的相关文献较少。

本文在前期研究基础上采用煤粉自预热燃烧 技术,在燃烧室内实现了气化细粉灰的无焰燃烧, 旨在探索实现气化细粉灰燃烧中低 NO_x排放的新 途径,并对其煤氮转化特性及 NO_x排放进行深入 研究。

1 试 验

1.1 试验装置和试验过程

试验装置为 30 kW 固体碳基燃料预热无焰燃 烧试验台,其原理如图 1 所示,主要由预热燃烧器、 下行燃烧室及其他辅助系统组成。

预热燃烧器本体采用 Cr₂₅Ni₂₀不锈钢材料制成, 以循环流化床为设计原型。一部分助燃风(一次 风,风量为理论风量的 20%~40%)从提升管底部供 入,另一部分燃烧所需空气(二次风和三次风)分别 从下行燃烧室顶部喷嘴和侧壁喷嘴引入。试验开始 前,向预热燃烧器内加入 4 kg 石英砂作为蓄热床 料。燃料进入预热燃烧器后在高温床料作用下发生 部分燃烧与部分反应,实现自身预热,产生的高温煤 气和高温煤焦(统称为预热燃料)从旋风分离器出 口离开,进入下行燃烧室继续燃烧。

下行燃烧室顶部喷口采用高温预热燃料与二次 风同轴射流喷口,结构如图2所示。高温预热燃料 从中心筒喷入,中间一层为内二次风通道,最外侧为 外二次风通道。三次风喷口布置在距下行燃烧室顶 部1000mm处。在侧墙上布置6层观火窗,其中 洁净煤技术

图1 试验工艺流程

分析仪对高温煤气中 O₂、NO 和 NO₂进行在线分析; ③ 利用稀硫酸溶液与氢氧化钠溶液吸收高温煤气 中的 NH₃和 HCN,分别采用纳氏试剂分光光度法和 硫氰酸汞分光光度法分析,其详细测量精度见文献 [31]。利用 Gasmet FTIR DX4000 烟气分析仪(芬 兰 GASMET 公司)对下行燃烧室沿程各处烟气组分

进行在线分析。利用氧化锆对烟气冷却器出口烟气 氧含量实时监测。试验过程中利用 Ganon G7XII 相 机(光圈 F4,快门速度 1/1 000 s,感光 ISO 1000,色 温 6 000 K)拍摄燃烧室内的火焰燃烧状况。试验数据 采集与取样工作均在系统已进入工况并稳定运行2 h 后进行,取样过程各测点温度波动控制在±4 ℃以内。

表 1 试验系统热电偶布置 Table 1 Thermocouple arrangement of experimental system

				8			-			
			预热	燃烧器						
热电偶	T1		T2		Т3		T4	Т5		
距提升管顶部距离/mm	距离/mm 100 500 1 ·		1 450	返	料器	下行燃烧室入口				
	下行燃烧室									
热电偶	Т6	Τ7	Т8	Т9	T10	T11	T12	T13	T14	T15
距下行燃烧室顶部距离/mm	100	250	400	600	800	1 200	1 600	2 100	2 600	3 200

1.3 试验原料

试验原料为产自山东茌平的气化细粉灰,挥发 分低,稳定燃烧较难,其工业分析及元素分析见表 2,灰成分分析和灰熔融性分析见表 3。气化细粉灰 粒径分布范围为 0~100 μm,其中 50% 切割粒径 d₅₀=13.2 μm,90% 切割粒径 d₉₀=40.93 μm,具体粒 径分布如图 3 所示。预热燃烧器床料粒径范围为 0.1~0.5 mm。

最上 2 层为 15 mm×150 mm 的方形,位于燃料喷口 以下 80 mm 及 250 mm 处,下面 4 层为内径 63 mm 的圆形,分别位于 600、900、1 200 及 1 600 mm 处。 引入少量压缩空气对内侧观火窗进行吹扫,以清除 燃烧过程中沉积的飞灰,其对燃烧的影响可忽略。

1.2 数据采集与取样分析

表1为热电偶(不确定度 < 0.5%)的安装位置。 在预热燃烧器内布置5支K型热电偶,在下行燃烧 室沿轴线方向布置10支S型热电偶。本试验测得 的温度均已根据辐射量进行校正。取样口分别设置 在旋风分离器出口处,以及距下行燃烧室顶部150、 400、900、1400、2400和3400mm处,可在线分析 下行燃烧室不同位置处的高温烟气。对于预热燃烧 器出口气体:①高温煤气利用氟膜集气袋收集,并 连接至 GC7800气相色谱仪(安捷伦科技有限公司) 分析成分组成;②利用电化学 KM9106 便携式烟气

表 2 茌平气化细粉灰工业分析和元素分析

Table 2	Proximate and	l ultimate	analyses	of Chiping	gasification	fine pow	der	ash
					8			

工业分析/%					$Q_{ m net,ar}$				
$M_{\rm ar}$	$V_{\rm ar}$	$FC_{\rm ar}$	$A_{\rm ar}$	C _{ar}	H _{ar}	O_{ar}	\mathbf{N}_{ar}	\mathbf{S}_{ar}	$(MJ \cdot kg^{-1})$
0.73	2.16	81.51	15.60	81.88	0.81	0	0.60	0.52	28.81

表 3 茌平气化细粉灰灰成分分析和灰熔融性分析

Table 3 Ash composition analysis and ash fusibility analysis of Chiping gasification fine powder ash

灰成分分析/%							灰熔	融性(弱)	조原性)/	Υ°C					
SiO_2	Al_2O_3	$\mathrm{Fe_2O_3}$	CaO	MgO	${\rm TiO}_2$	SO_3	K_2O	Na ₂ O	P_2O_5	SrO	MnO	DT	ST	HT	FT
49.16	16.44	9.03	12.11	2.17	6.28	0.87	0.37	1.21	0.66	0.40	0.15	1 128	1 147	1 158	1 172

图 3 气化细粉灰粒径分布曲线

Fig.3 Particle size distribution curve of gasification fine powder ash

1.4 试验工况

预热温度和预热燃烧器空气当量比是影响气化

细粉灰中煤氮析出和转化的重要因素。由于2个变量之间存在相关关系,因此本文在进行单一变量试验时,通过给煤量和配风量之间的协同控制,实现对另一变量的约束,研究不同预热条件下气化细粉灰中氮元素的转化特性,并在下行燃烧室内实现气化细粉灰无焰燃烧模式下的低 NO_x排放。试验具体运行工况参数见表4。其中,预热燃烧器当量比、二次风当量比(内外二次风比为1:1)、三次风当量比分别为通入预热燃烧器的风量、二次风量以及三次风量与煤粉完全燃烧所需理论空气量的比值,预热温度指预热燃烧器内的最高温度,输入热功率与给煤量呈正相关。

表 4 试验工况参数 Table 4 Experimental conditions

工况	输入功率 Q/kW	给料量 W/ (kg・h ⁻¹)	预热燃烧器 空气量 <i>M</i> ₁ / (m ³ ・h ⁻¹)	预热燃烧器 空气当量比 λ_1	预热温度 T _{max} /℃	二次风量 <i>M</i> ₂ / (m ³ · h ⁻¹)	二次风 当量比 λ ₂	三次风量 <i>M</i> ₃ / (m ³ · h ⁻¹)	三次风 当量比 λ ₃	总当 量比λ
1	37.61	4.70	8.83	0.25	854	14.13	0.40	19.42	0.55	1.20
2	35.29	4.41	8.28	0.25	902	13.25	0.40	18.21	0.55	1.20
3	38.57	4.82	9.05	0.25	950	14.48	0.40	19.91	0.55	1.20
4	40.81	5.10	13.41	0.35	900	15.33	0.40	16.85	0.44	1.19
5	45.06	5.63	19.03	0.45	903	16.92	0.40	13.95	0.33	1.18

2 试验结果及分析

2.1 预热燃烧器运行特性

以工况 2 为例对预热燃烧器运行稳定性进行研 究。图 4 为预热燃烧器内温度随时间变化曲线。试 验工况稳定时,提升管内温度分布均匀,最高温度为 902 ℃,位于提升管中部;最低温度为 865 ℃,位于 提升管底部,最高温差为 37 ℃,体现了循环流化床 温度均匀化的特点。预热燃烧器内温度平稳,基本 不随时间推移发生明显变化,说明气化细粉灰在过 量空气系数为0.25 的工况下,可在循环流化床中稳 定地进行部分气化和部分燃烧反应,释放热量,将 温度维持在 900 ℃。下行燃烧室入口温度为 725 ℃,这是因为管道较长,保温较差导致热量散 失。同时说明预热燃烧器能够连续、稳定地产生 温度725 ℃的高温预热燃料。对于其他工况,预热 燃烧器床内的温度分布也能保持较高的稳定性和 均匀性。

图 5 为预热燃烧器内压力差随时间变化曲线。 从滤波后的曲线可以看出,当预热燃烧系统稳定运 行时,物料浓度分布基本均匀,各部分压差波动达到 稳定状态,再次说明高温预热燃料可稳定、连续地进 入下行燃烧室进一步燃烧。因此,利用预热燃烧器 对气化细粉灰进行预热的方法可行。 洁净煤技术

表 5

Fig.5 Pressure differences variations over time in preheating burner in case 2

2.2 预热温度的影响

研究不同预热温度下的燃料氮转化与 NO_x排放 特性的工况为工况1、2、3。在调整试验参数至工况 稳定的过程中,预热燃烧器内温度随给煤量的增加 而减小,随空气量的增加而增加。因此试验过程中 通过协同控制给煤量和配风量,在不改变预热燃 烧器空气当量比的前提下,实现对预热温度的 控制。

2.2.1 预热过程燃料氮转化特性

工况稳定后在旋风分离器出口对预热后的高温 煤气进行取样,分析结果见表 5。可知,气化细粉灰 预热后的煤气成分大部分为 N₂和 CO₂,另有少量的 CO、H₂和 CH₄。其中, CH₄含量最少,占比不到 0.5%。未检测到 O₂及 NO_x,表明高温煤气具有强还 原性,对 NO_x的生成有很好的抑制作用。气化细粉 灰中的部分燃料氮在欠氧的强还原性气氛下提前脱 除,主要向 N₂、NH₃与 HCN 三种含氮物质转化。 NH₃与 HCN 含量随预热温度的升高略有增加,浓度 比接近 1:1。3种工况下产生的高温煤气均具有较 高的低位热值,可见,携带大量化学热、气固显热的 预热燃料将稳定进入下行燃烧室燃烧,热量被下行 燃烧室有效利用。

Table 5Composition analysis of high temperature coal									
gas at different preheating temperatures (dry base)									
煤气组分	工况 1	工况 2	工况 3						
CO 体积分数/%	2.43	4.48	4.40						
CO2体积分数/%	15.41	15.36	16.89						
H2体积分数/%	1.26	2.31	3.29						
CH4体积分数/%	0.41	0.35	0.34						
N2体积分数/%	80.49	77.50	75.08						
02体积分数/%	0	0	0						
NO 浓度/(mg・m ⁻³)	0	0	0						
NO_2 浓度/(mg・m ⁻³)	0	0	0						
N_20 浓度/(mg・m ⁻³)	0	0	0						
NH_3 浓度/(mg・m ⁻³)	132	139	145						
HCN 浓度/(mg・m ⁻³)	138	141	150						
$Q_{\rm L}/({\rm MJ\cdot m^{-3}})$	1.77	1.81	2.09						

不同预热温度下高温煤气成分(干基)

在旋风分离器出口处对预热后的高温煤焦取样 进行工业分析和元素分析,并利用灰平衡假设^[32], 对气化细粉灰中各元素转化率进行计算,结果如图 6 所示。气化细粉灰各组分的转化率随预热温度的 增加而增加。预热温度由 854 ℃增至 902 ℃时,各 组分转化率上升明显;而预热温度进一步升高到 950 ℃时,各组分转化率上升幅度减小。其中大部 分挥发分在预热过程中析出。根据氮平衡假设^[25], 预热过程中燃料氮向 N2、NH3和 HCN 的转化率计算 结果如图 7 所示。预热温度的变化对煤氮向 NH3与 HCN转化率影响不大,主要影响煤氮向 N,的转化 率。预热温度由 854 ℃增到 902 ℃时,煤氮向 N,的 转化率增大且幅度较明显;预热温度进一步增到 950 ℃时,煤氮向 N₂的转化率增加但幅度明显减小。 气化细粉灰在整个预热过程中的氮转化率在 20% 以下,说明有大多数氮仍残留在高温煤焦中。为进 一步确定高温煤焦中的氮元素分布,将高温煤焦置 于马弗炉中加热,去除水分与挥发分后,进行元素分 析,得到的氮元素结果即为高温煤焦中焦炭氮含量。 从高温煤焦总氮含量中扣除焦炭氮含量即为挥发分 氮含量。高温煤焦含氮分布如图 8 所示。可知,3 种工况下取得的高温煤焦中挥发分氮占比均小于 5%,且随着预热温度的升高逐渐减小。焦炭氮占高 温预热煤焦中总氮含量的95%以上,说明几乎全部 挥发分氮已在预热过程中析出,进入下行燃烧室参 与燃烧反应的燃料氮类型主要为焦炭氮,成为后续 燃烧中 NO_x的主要来源。

60

40 转化率/%

20

不同预热温度下煤氮向各含氮化合物转化率 图 7

Fig.7 Conversion rate of fuel-N to each nitrogen compound at different preheating temperatures

高温预热燃料燃烧特性 2.2.2

图 9 为下行燃烧室温度沿轴向变化曲线。3 条 温度曲线的峰值温度均低于1100℃,表明热力型 NO,产出量极低,基本可忽略。在下行燃烧室中,预 热后的煤气含有较多的可燃组分,与二次风相遇后 能快速着火并燃烧,不存在着火延迟,因此燃烧室顶 部靠近二次风喷口区域的燃烧温度较高,均高于 950 ℃,3 个工况下的最高温度均在距下行燃烧室顶 部 800 mm 处达到。在二次风和三次风配比相同的 情况下,随着预热温度升高,预热燃料在下行燃烧室 的燃烧温度也略有提高,总体燃烧稳定,说明预热可

明显改善气化细粉灰的燃烧特性。

Fig.9 Temperature profiles along the axis of down-fired combustor at different preheating temperatures

下行燃烧室沿轴线方向不同位置处火焰照片如 图 10 所示。在下行燃烧室内壁、顶部的预热燃料喷 口以及各热电偶探针和取样管,无明显火焰锋面,属 于典型的无焰燃烧。随预热温度升高,火焰照片亮 度逐渐变亮,在预热温度为950℃时亮度达到最大, 这与图9中下行燃烧室的温度分布趋势较吻合。在 试验台尾部取飞灰进行可燃物测定,根据文献[25] 中公式计算燃烧效率。经计算,预热温度为854、 902 和 950 ℃时,燃烧效率分别为 91.23%、93.86% 和 90.72%,表明燃烧效率与燃烧区域温度及火焰亮 度并非单纯的正比关系,而是随预热温度升高先增 后减,预热温度为902℃时达到最大。3个工况下, 气化细粉灰均在下行燃烧室实现了稳定的无焰燃 烧,燃烧效率均较高。

2.2.3 NO,排放特性

不同预热温度下,气化细粉灰 NO_x排放量(6% O₂)和燃料氮向 NO₂的转化率如图 11 所示。转化率 和 NO_x 排放浓度随预热温度的变化趋势相同, 均随 预热温度的升高先减小后增加。902 ℃为本研究气 化细粉灰最佳预热温度,NO,排放浓度达到最低,为 102.31 mg/m³,此时燃料氮向 NO。的转化率达最小 值,为6.13%。NO_x排放浓度随预热温度的变化关 系与预热燃料特性有关,研究表明[33],高温煤焦的 孔结构对 NO, 的还原有重要作用, 预热温度为 900 ℃时,高温煤焦的比表面积和孔容积最大,增加了与 NO_x的接触面积,对 NO_x的异相还原最强,更多的 $NO_x 被煤焦还原成 N_2$,从而降低了 NO_x 的排放浓度。

图 10 下行燃烧室沿轴线方向不同位置处火焰照片

Fig.10 Flame images along the axis of down-fired combustor at different preheating temperatures

2.3 预热燃烧器空气当量比的影响

研究不同预热器空气当量比下的燃料氮转化与 NO_x排放特性的工况为工况 2、4、5。通过改变给煤 量和配风量,保证试验系统在预热燃烧器空气当量 比变化的条件下,维持预热温度基本不变。

2.3.1 预热过程燃料氮转化特性

表 6 为不同空气当量比下的高温煤气成分。可 以看出,NH₃含量随着空气当量比的增加明显上升, 而 HCN 含量逐渐减少。文献[34]中指出,HCN 主 要来源于挥发分,NH₃主要来源于焦炭。因此推断, 随着空气当量比增加,气化细粉灰中将有更多煤氮 从焦炭中析出转化为 NH₃。图 12 为不同预热燃烧 器当量比下各组分转化率计算结果。随着空气当量 比增大,各组分的转化率增加,但幅度较小。虽然 C 转化率随着预热燃烧器空气当量比的增长而增大, 但煤气中 CO 和 CO₂含量并非线性变化(表 6)。这 是由于 CO、C 与 O₂的燃烧反应及 C 与 CO₂的气化 反应相互竞争的结果。预热燃烧器空气当量比从 0.35 增至0.45 时,燃烧反应份额增大,因此煤气中CO含量降低,CO2含量升高。

表 6 不同预热燃烧器空气当量比下高温煤气成分(干基)

Table 6 Composition analysis of high temperature coal gas at different λ_1 (dry base)

		• • • •	
煤气组分	工况 2	工况 4	工况 5
CO 体积分数/%	2.48	3.26	2.83
CO2体积分数/%	15.36	14.27	15.45
H2体积分数/%	1.31	2.42	2.88
CH4体积分数/%	0.35	0.56	0.71
N2体积分数/%	80.50	79.49	78.13
02体积分数/%	0	0	0
NO 浓度/(mg・m ⁻³)	0	0	0
NO_2 浓度/(mg・m ⁻³)	0	0	0
N_20 浓度/(mg · m ⁻³)	0	0	0
NH_3 浓度/(mg・m ⁻³)	139	258	267
HCN 浓度/(mg・m ⁻³)	141	90	73
$Q_{\rm L}/({\rm MJ\cdot m^{-3}})$	1.85	1.74	1.95

图 12 不同预热燃烧器当量比下各组分转化率 Fig.12 Conversion rate of each component at different λ_1

不同预热燃烧器当量比下,预热过程中煤氮向 N₂、NH₃和 HCN 的转化率如图 13 所示。与图 7 结 果不同,预热燃烧器当量比的变化对煤氮向 HCN 的 转化率影响不大,主要影响煤氮向 N₂和 NH₃的转化 率。随预热燃烧器当量比增加,煤氮向 N₂的转化率 下降,向 NH₃的转化率上升,二者趋势正好相反,最 终体现在挥发分氮总含量的变化幅度较小。高温煤 焦含氮分布如图 14 所示。高温煤焦中焦炭氮含量 随预热燃烧器空气当量比的增加而逐渐减小,与 NH₃、HCN 含量变化情况相符。焦炭氮在高温煤焦 总氮中仍占主导地位,是后续燃烧中 NO_x的主要来 源。适当增加预热燃烧器空气当量比,可增加焦炭 氮在预热过程中转化为 NH₃的几率。

图 13 不同预热器空气当量比下煤氮向各含氮化合物转化率 Fig.13 Conversion rate of fuel-N to each nitrogen

2.3.2 高温预热燃料燃烧特性

图 15 为下行燃烧室温度沿轴向变化曲线。可 知,在二次风和三次风配比相同的情况下,随着预热 燃烧器空气当量比增加,预热燃料在下行燃烧室的 燃烧温度逐渐降低。在三次风喷口位置以上区域, 温度均匀增加,这主要是由烟气回流以及煤气和煤 焦的不同燃烧区间造成的。在三次风喷口位置以下 区域,烟气为平推流,温度呈下降趋势,近似线性。 由于散热条件相同,3 条曲线的温度下降速率相同。 下行燃烧室沿轴线方向不同位置处火焰照片如图 16 所示。3 个工况的整体燃烧区域亮度均较均匀, 在下行燃烧室 600 和 900 mm 区域,燃烧亮度最亮, 可见主要燃烧过程发生在该区域内,在该区域外,燃 烧反应较弱。随着预热燃烧器空气当量比增加,预 热燃料在下行燃烧室的火焰亮度逐渐变暗,无肉眼 可见的火焰锋面,结合下行燃烧室轴向的温度分布, 可以判断本组试验同样实现了气化细粉灰稳定的无 焰燃烧。经计算,预热燃烧器空气当量比为 0.25、 0.35、0.45 时,燃烧效率均在 90% 以上,分别为 93.86%、90.53%和 90.62%。

2.3.3 NO,排放特性

不同预热器空气当量比下,气化细粉灰 NO_x排 放量(6% O₂)和燃料氮向 NO₂的转化率如图 17 所 示。可以看出, NO, 排放浓度随预热燃烧器空气当 量比的增加而减小,λ₁=0.45 时,预热温度为最佳预 热温度(表 4),此时 NO_x 排放浓度达最低,为 83.02 mg/m³,燃料氮向 NO,的转化率也达到最小 值,为5.94%。适当增大预热燃烧器空气当量比可 大幅降低 NO, 排放水平。由图 12 可知, 预热燃烧器 空气当量比增加,在预热过程中燃料氮的转化率也 会增加,有利于 NO_{*}减排。此外,文献[27]表明,预 热后高温煤焦的孔隙结构会随预热燃烧器空气当量 比的增加更加发达,有利于其进入下行燃烧室继续 燃烧过程中 NO.在焦炭表面的还原。两者综合作用 导致预热燃烧器空气当量比越高,最终的转化率和 NO₄排放浓度越低。相比于改变预热温度,较多的 焦炭氮在预热过程中析出并转化为 NH,,因此图 17 中 NO. 排放浓度明显小于图 11. 再次说明焦炭氮对

洁净煤技术

Fig.16 Flame images along the axis of down-fired combustor at different λ_1

于 NO_x 排放的重要性。

在工程实际中应重点聚焦于焦炭氮并尽可能使 其提前脱除,减少在燃烧过程中向 NO_x的转化,从而 实现减排的目的。

3 对比分析

综合试验结果,目前现有的固体燃料燃烧装置 中直接燃用气化细粉灰与本文的煤粉自预热燃烧技 术相比,难以达到理想效果^[27,35-36],同时为提高燃 烧效率,锅炉的燃烧温度较高,导致更高浓度的 NO_x 及 SO₂等污染物排放^[37-38],无法稳定、高效和清洁 利用。若要对气化灰渣中的未燃碳进行配煤掺烧利 用,其高灰分会影响气化渣作为补充燃料的掺烧量, 增大煤灰量,碳、灰相互制约,阻碍了其资源化利 用^[39-40]。与常规煤粉炉相比,循环流化床对多种固 体燃料有更广泛的适应性,可直接实现气化细粉灰 的稳定燃烧^[41-42],但造价较高、成本昂贵、耗电量较 大。本文融合了煤粉自预热燃烧、颗粒改性和分级 燃烧等技术调整燃料与氧化剂的混合过程,控制燃 料 N 向 NO_x的转化,实现了气化细粉灰的无焰燃烧, 获得了低 NO_x排放的调控参数,为难燃低挥发分煤 基固废的工程利用提供了技术支持,证明了煤粉自 预热燃烧技术可突破常规的加热、着火和燃烧方式, 燃料适应性广,对气化细粉灰类低挥发分煤化工固 废仍适用,燃烧稳定性好且排放更低,具有广阔的工 程化应用前景。

4 结 论

1)预热燃烧技术可燃用低挥发分的气化细粉 灰,预热燃烧器内温度平稳,随时间基本不变。产生 的高温预热燃料能够连续、稳定地进入下行燃烧室 进一步燃烧,无着火延迟。本研究的所有工况均实 现了稳定的无焰燃烧,燃烧区域温度分布均匀,峰值 温度低,无明显的火焰锋面。

2)预热对气化细粉灰的燃烧特性改善有重要 作用。预热产生的高温煤气具有强还原性,以 N₂及 CO₂等为主,不含 O₂和 NO_x,对 NO_x的生成有很好的 抑制作用。部分燃料氮在欠氧的强还原性气氛下提 前脱除,主要向 N₂、NH₃与 HCN 这 3 种含氮物质转 化。气化细粉灰中几乎全部的挥发分氮和大部分挥 发分在预热过程中析出,因此进入下行燃烧室参与 燃烧反应的燃料氮类型主要为焦炭氮,成为后续燃 烧中 NO_x的主要来源。

3) 随预热温度升高, 气化细粉灰在预热过程中 各组分的转化率增加。相比于预热燃烧器空气当量 比, 预热温度对预热过程中挥发分氮的释放影响较 明显, 主要体现在其对煤氮向 N₂转化率的影响。燃 烧效率在预热温度为 902 ℃ 时达到最大, 为 93.86%。燃料氮向 NO_x转化率和 NO_x排放浓度均随 预热温度的升高先减小后增加,902 ℃ 为本研究中最佳预热温度,此时 NO_x排放浓度和燃料氮向 NO_x的转化率均达到最小值,分别为 102.31 mg/m³(6% O₂)和 6.13%。

4) 随预热燃烧器空气当量比的增加, 气化细粉 灰各组分转化率增加。相比于预热温度, 预热燃烧 器空气当量比主要影响预热过程中煤氮向 N_2 和 NH₃的转化率, 以及焦炭氮的析出。适当增加预热 燃烧器空气当量比, 有利于气化细粉灰中挥发分及 各组分的释放, 并增加焦炭氮在预热过程中转化为 NH₃的几率。燃料氮向 NO_x转化率和 NO_x排放浓度 均随预热燃烧器空气当量比增加而减小, λ_1 = 0.45 为本文最佳预热燃烧器空气当量比, NO_x排放浓度 和燃料氮向 NO_x的转化率均达最小值, 分别为 83.02 mg/m³(6% O₂)和5.94%。

参考文献(References):

 [1] 姚德文.低碳经济模式下的产业发展新路径[J]. 当代经济, 2009(24):6-7.

YAO Dewen. The new path of industrial development under the low carbon economic model [J]. Contemporary economics, 2009 (24):6-7.

- WANG J,FAN W,LI Y, et al. The effect of air staged combustion on NO_x emissions in dried lignite combustion [J]. Energy, 2012, 37 (1):725-736.
- [4] YI L, FENG J, LI W Y. Evaluation on a combined model for lowrank coal pyrolysis [J]. Energy, 2019, 169:1012-1021.
- [5] 朱书骏. 煤/半焦富氧预热燃烧特性及 NO_{*}排放特性试验研究 [D]. 北京:中国科学院工程热物理研究所,2019.

ZHU Shujun. Experimental study on preheating oxy – fuel combustion and NO_x emission characteristics of coal/char [D]. Beijing; Institute of Engineering Thermophysics, Chinese Academy of Science, 2019.

[6] 李永恒. SAPO-18 分子筛基催化剂选择催化还原脱除 NO_x的研究[D].北京:中国石油大学,2018.
 LI Yongheng. Study on SAPO-18 zeolite based catalysts for the se-

lectively catalytic reduction of NO_x by $NH_3 [D]$. Beijing: China University of Petroleum, 2018.

- [7] LI Z Q, WANG Z X, SUN R, et al. Influence of division cone angles between the fuel – rich and the fuel – lean ducts on gas particle flow and combustion near swirl burners[J]. Energy, 2002, 27(12):1119–1130.
- [8] FAN W, LIN Z, LI Y, et al. Effect of air staging on anthracite combustion and NO_x formation [J]. Energy & Fuels, 2009, 23 (1):111-120.

1998,12(6):1322-1327.

- [10] RISTIC D, SCHUSTER A, SCHEFFKNECHT G. On the potential of flameless oxidation to reduce NO_x emissions from pulverized coal combustion[J]. Journal of the International Flame Research Foundation, 2010(4):1-16.
- [11] WÜNNING A J, WÜNNING G J. Flameless oxidation to reduce thermal no-formation [J]. Progress in Energy & Combustion Science, 1997, 23(1):81-94.
- [12] STADLER H, TOPOROV D, FOERSTER M, et al. On the influence of the char gasification reactions on NO formation in flameless coal combustion [J]. Combustion & Flame, 2009, 156 (9):1755-1763.
- [13] VERÍSSIMO A, ROCHA A, COSTA M. Importance of the inlet air velocity on the establishment of flameless combustion in a laboratory combustor [J]. Experimental Thermal & Fluid Science, 2013,44(44):75-81.
- [14] LI P F, MI J C, DALLY B B, et al. Progress and recent trend in MILD combustion[J]. Science China Technological Sciences, 2011,54(2):255-269.
- STADLLER H, RISTIC D, FORSTER M, et al. NO_x emissions from flameless coal combustion in air, Ar/O₂ and CO₂/O₂[J]. Proceedings of the Combustion Institute, 2009, 32 (2): 3131-3138.
- [16] WEIDNANN M, HONORÉ D, VERBAERE V, et al. Experimental characterization of pulverized coal MILD flameless combustion from detailed measurements in a pilot-scale facility[J]. Combustion & Flame, 2016, 168:365-377.
- [17] SCHAFFEL M N, MANCINI M, SZLEK A, et al. Novel conceptual design of a supercritical pulverized coal boiler utilizing high temperature air combustion (HTAC) technology [J]. Energy, 2010, 35(7):2752-2760.
- [18] WEBER R, SMART J P, KAMP W V. On the (MILD) combustion of gaseous, liquid, and solid fuels in high temperature preheated air [J]. Proceedings of the Combustion Institute, 2005, 30(2): 2623-2629.
- [19] DALLY B B, SUNG S H, RICHARD C A, et al. On the burning of sawdust in a MILD combustion furnace [J]. Energy & Fuels, 2010,24(6):3462-3470.
- [20] XING X, WANG B, LIN Q. Structure of reaction zone of normal temperature air flameless combustion in a 2 t/h coal fired boiler furnace [J]. Proceedings of the Institution of Mechanical Engineers Part A; Journal of Power and Energy, 2007, 221(4): 473-480.
- [22] WEIDMANN M, VERBAERE V, BOUTIN G, et al. Detailed investigation of flameless oxidation of pulverized coal at pilot-scale (230 kW_{th}) [J]. Applied Thermal Engineering, 2015, 74: 96–101.
- [23] SAHA M, DALLY B, MEDWELL P, et al. Burning characteristics of Victorian brown coal under MILD combustion conditions [J].
 Combustion & Flame, 2016, 172:252-270.
- [24] 吕清刚,朱建国,牛天钰,等. 煤粉高温预热方法:200710175526.3 [P].2008-04-09.
 - LYU Qinggang, ZHU Jianguo, NIU Tianyu, et al. High

洁净煤技术

temperature preheating method for pulverized coal: 200710175526.3[P]. 2008-04-09.

- [25] 牛天钰. 高温煤基燃料燃烧和氮氧化物生成特性的试验研究
 [D].北京:中国科学院工程热物理研究所,2008.
 NIU Tianyu. Experimental study on combustion and NO_x emission of high temperature preheated coal-based fuel[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Science,2008.
- [26] 欧阳子区.无烟煤粉预热及其燃烧和污染物生成特性实验研究[D].北京:中国科学院工程热物理研究所,2014.
 OUYANG Ziqu. Experimental study on preheating and combustion characteristics and pollutants emission of pulverized anthracite[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Science, 2014.
- [27] 么遥. 细粉半焦预热燃烧及 NO_x生成特性实验研究[D]. 北 京:中国科学院工程热物理研究所,2016.

YAO Yao. Experimental study on preheated combustion characteristics and NO_x emission of pulverized semi-coke[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Science, 2016.

- [28] 刘稳. 低挥发分碳基燃料无焰燃烧及 NO_x生成特性实验研究
 [D]. 北京:中国科学院工程热物理研究所,2020.
 LIU Wen. Experimental study on flameless combustion and NO_x formation characteristics of low volatile carbon-based fuel[D].
 Beijing:Institute of Engineering Thermophysics, Chinese Academy of Science, 2020.
- [29] 中国科学院工程热物理研究所.研究所"MW 级超低 NO_x煤 粉预热燃烧技术"通过科技成果评审[EB/OL].(2020-12-11). http://www.etp.ac.cn/xwdt/kydt/202012/t20201211_ 5816976.html.
- [30] OUYANG Z, SONG W, LI S, et al. Experiment study on NO_x emission characteristics of the ultra-low volatile fuel in a 2 MW novel pulverized fuel self – sustained preheating combustor. 2020,209.
- [31] 中国科学院工程热物理研究所.研究所预热燃烧技术突破煤 粉锅炉氮氧化物无氨原始排放新纪录[EB/OL].(2020-06-04). http://www.etp.ac.cn/xwdt/kydt/202006/t20200604_ 5602230.html.
- [32] 欧阳子区,朱建国,矫维红,等. 煤气化与燃烧生成烟气中含 氮化合物的测试方法[J]. 计测技术,2013,33(5):23-27.
 OUYANG Ziqu, ZHU Jianguo, JIAO Weihong, et al. Analvtical methods of nitrogen compounds in coal gasification and combustion generation of flue gas [J]. Metrology & Measurement

Technology, 2013, 33(5):23-27.

- [33] OUYANG Z, ZHU J, LYU Q. Experimental study on preheating and combustion characteristics of pulverized anthracite coal [J]. Fuel, 2013, 113(2):122-127.
- [34] AARNA I, SUUBERG E M. A Review of the kinetics of the nitric oxide-carbon reaction[J]. Fuel, 1997, 76(6):475-491.
- [35] LI L, LI C. Formation of NO_x and SO_x precursors during the pyrolysis of coal and biomass. Part III. Further discussion on the formation of HCN and NH₃ during pyrolysis [J]. Fuel, 2000, 79 (20):1899-1906.
- [36] 刘嘉鹏. 气流床气化细灰燃烧特性及再利用探讨[J]. 煤炭加 工与综合利用,2017(6):17-20.
 LIU Jiapeng. Discussion on combustion characteristics and reuse of entrained-flow gasified fine ash[J]. Coal Processing & Comprehensive Utilization,2017(6):17-20.
- [37] 曲江山,张建波,孙志刚,等. 煤气化渣综合利用研究进展
 [J]. 洁净煤技术,2020,26(1):184-193.
 QU Jiangshan,ZHANG Jianbo,SUN Zhigang, et al. Research progress on comprehensive utilization of coal gasification slag[J].
 Clean Coal Technology,2020,26(1):184-193.
- [38] 邓鸿翔,任强强,张玉魁. 循环流化床气化细粉灰熔融特性研究[J]. 燃料化学学报,2018,46(3):273-282.
 Deng Hongxiang, Ren Qiangqiang, Zhang Yukui. Melting characteristics of fine ash from circulating fluidized bed gasifier [J].
 Journal of Fuel Chemistry and Technology, 2018, 46 (3): 273-282.
- [39] 邓鸿翔. 循环流化床气化细粉灰熔融特性试验研究[D].北 京:中国科学院工程热物理研究所,2018.
 DENG Hongxiang. Experimental study on melting characteristics of fine ash from circulating fluidized bed gasifier[D]. Beijing:Institute of Engineering Thermophysics, Chinese Academy of Science,2018.
- [40] WU S, HUANG S, JI L, et al. Structure characteristics and gasification activity of residual carbon from entrained flow coal gasification slag[J]. Fuel, 2014, 122:67–75.
- [41] 杜杰,戴高峰,李帅帅,等. 气化细渣基础燃烧特性试验研究
 [J]. 洁净煤技术,2019,25(2):83-88.
 DU Jie, DAI Gaofeng, LI Shuaishuai, et al. Experimental study on the fundamental combustion characteristics of fine slag from gasification[J]. Clean Coal Technology,2019,25(2):83-88.
- [42] REN Q, BAO S. Combustion characteristics of ultrafine gasified semi-char in circulating fluidized bed[J]. The Canadian Journal of Chemical Engineering, 2016, 94(9):1676-1682.