2020年 12月

驱替煤层气 CO₂ 分离研究

李雪飞^{1,2,3},车永芳^{1,2,3},郭昊乾^{1,2,3},李小亮^{1,2,3}

(1.煤炭科学技术研究院有限公司煤化工分院,北京 100013;2.煤基节能环保炭材料北京市重点实验室,北京 100013;3.煤炭资源高效开采与洁净利用国家重点实验室,北京 100013;)

摘 要:CO₂驱煤层气技术是 CO₂利用的重要途径之一。CO₂驱煤层气既实现了 CO₂的地下封存利 用,又提高煤层气采收率。受煤层地质条件复杂性影响,CO₂注入后不能完全封存在煤层中,随着煤 层气排采会逐渐渗出,使得驱替煤层气中含有 CO₂,需经分离脱除后才能输送至管网。针对驱替煤层 气产量、组成及压力条件,测定了 CO₂和 CH₄在碳分子筛上的吸附特性曲线,计算了 CO₂/CH₄平衡分 离系数。利用变压吸附评价装置进行了 CO₂/CH₄分离提纯工艺评价试验,计算了吸附剂处理量和 CH₄回收率。结果表明,CO₂和 CH₄在碳分子上的吸附符合 I 型吸附等温线,CO₂吸附量为 1.27 mol/kg, CH₄吸附量为 0.48 mol/kg,CO₂/CH₄平衡分离系数为 3.38,碳分子筛吸附剂分离比大,主要基于动力 学速率进行分离,CO₂作为吸附相获得,CH₄则作为非吸附相获得。CO₂/CH₄在吸附压力 600 kPa,吸 附时间 120 s条件下,经变压吸附分离后产品气中 CO₂浓度在 1%以下;CO₂/CH₄分离尾气在吸附压力 500 kPa,吸附时间 120 s条件下,经变压吸附提纯后,产品气中 CO₂浓度在 5%以下。可将 CO₂/CH₄分 离产品气和分离尾气再提纯产品气混合得到最终产品气。CO₂/CH₄经变压吸附分离提纯后产品气中 CO₂浓度在 1%以下。以单并产量 1 200 Nm³/d 为例,单位吸附剂处理能力在 100 Nm³/h 左右,CH₄ = 收率达到 92.375%。驱替煤层气经净化后可通过变压吸附分离提纯脱除 CO₂后输送至管网。 **关键词**:煤层气;驱替;变压吸附;分离;提纯

中图分类号:TQ53;TK114 文献标志码:A 文章编号:1006-6772(2020)06-0151-08

Research on CO₂ separation of displacing coal-bed methane

LI Xuefei^{1,2,3}, CHE Yongfang^{1,2,3}, GUO Haoqian^{1,2,3}, LI Xiaoliang^{1,2,3}

(1. Coal Chemistry Branch of China Coal Research Institute, Beijing 100013, China; 2. Beijing Key Laboratory of Coal Based Carbon

Materials, *Beijing* 100013, *China* ;3. *State Key Laboratory of High Efficient Mining and Clean Utilization of Coal Resources*, *Beijing* 100013, *China*) **Abstract**: CO_2 sequestration enhancing coalbed methane recovery (CO_2_ECBM) is one of the important ways of CO_2 utilization. The underground storage and utilization of CO_2 can be realized, and recovery rate of coalbed methane can be improved by CO_2_ECBM . Affected by the complexity of coal seam geological conditions, CO_2 can't be completely sealed in coal seam after injection, and will gradually seep out with CBM drainage. The displacement of coal-bed methane containing CO_2 needs to be separated and removed before it could be transported to the pipeline network. Aiming at the production, composition and pressure conditions of displacement CBM, the adsorption characteristics of CO_2 and CH_4 on carbon molecular sieves were measured, and the equilibrium separation coefficients of CO_2/CH_4 were calculated. The separation and purification experiments of CO_2/CH_4 were carried out by pressure swing adsorption evaluation device, and the amount of adsorbent treated and the recovery of CH_4 were calculated. The results show that the adsorption capacity of CH_4 is 0.48 mol/kg. The equilibrium separation coefficient of CO_2/CH_4 is 3.38, and the separation ratio of carbon molecular sieves is high, which is mainly based on the kinetic rate. CO_2 is got as adsorptive phase, CH_4 is got as non-adsorptive phase. With the condition of adsorption pressure of 600 kPa,

LI Xuefei, CHE Yongfang, GUO Haoqian, et al. Research on CO₂ separation of displacing coal-bed methane [J]. Clean Coal Technology, 2020, 26(6):151-158.

151

收稿日期:2019-08-26;责任编辑:白娅娜 DOI:10.13226/j.issn.1006-6772.F19082601

基金项目:国家重点研发计划资助项目(2018YFB0605604);国家科技重大专项资助项目(2016ZX05045-005);天地科技创新创业专项资金资助项 目(2018-TDMS006)

作者简介:李雪飞(1980—),男,黑龙江哈尔滨人,研究员,主要从事煤层气提纯利用技术研究。E-mail:lixfeilove@qq.com 引用格式:李雪飞,车永芳,郭吴乾,等.驱替煤层气 CO₂分离研究[J].洁净煤技术,2020,26(6):151-158.

洁净煤技术

and adsorption time of 120 s, the concentration of CO_2 in the CO_2/CH_4 separation product gas was below 1% after pressure swing adsorption separation. With the condition of adsorption pressure of 500 kPa, and adsorption time of 120 s, the concentration of CO_2 in the CO_2/CH_4 separation tail gas separation product gas was below 5% after pressure swing adsorption separation. The final product gas would be got with the mixing of the CO_2/CH_4 separated gas and the purified gas from the separation tail gas. CO_2/CH_4 is separated and purified by pressure swing adsorption, and the concentration of CO_2 in the product gas is below 1%. Taking 1 200 Nm³/d of single well production as an example, treatment capacity of adsorbent per unit is about 100 Nm³/h, and the recovery rate of CH_4 reaches 92.375%. The displaced CBM can be separated and purified by pressure swing adsorption to remove CO_2 , and then transported to the pipeline network. **Key words**:coal-bed methane; displacement; pressure swing adsorption; separation; purification

0 引 言

CO₂捕集和封存技术(CCS)是指 CO₂从工业或 相关能源的排放源中分离出来并加以资源化利用或 输送到一个封存地点长期与大气隔绝的过程。 CCUS(carbon capture utilization and storage)技术是 CCS 技术新的发展趋势,即把生产过程中排放的 CO,进行提纯,继而投入到新的生产过程中,可以循 环再利用,不是简单封存。与 CCS 相比,可以将 CO2资源化,产生经济效益,更具有现实操作性。 CO,利用技术主要包括 CO,驱油技术(CO,-EOR)^[1-2]、 CO₂驱煤层气技术(CO₂-ECBM)^[3-5]、CO₂生物转 化^[6-7]和 CO₂化工合成^[8-9]等。CO₂驱煤层气技术通 过将 CO,注入煤层,将吸附在煤基质上的部分 CH4 驱替置换出来提高煤层气 CH₄采收率。抽采的驱替 煤层气中含有 CO,,CO,浓度在 0~20%,需净化处理 符合国标质量要求才能进入管网输送至下游用户。 目前针对驱替煤层气中 CO₂/CH₄分离的方法有变 压吸附法^[10-14]、膜分离法^[15-17]和水合物法^[18-21]等。 其中膜分离法适合 CO,分压高等情况,膜组件多存 在易堵、寿命低等问题。水合物法处在理论研究及 实验室研发阶段,距离工业应用还有一定差距。变 压吸附法无论从技术可行性和经济性都适合于驱替 煤层气 CO₂/CH₄分离。刘学武等^[10]利用椰壳活性 炭研究了低温条件下 CH₄和 CO₂吸附分离特性,发 现随着温度或压力降低,椰壳活性炭对 CO,/CH₄二 元混合气体的分离因子不断增大,且对温度的敏感 性较压力大,但未明确 CO,浓度且未进行变压吸附 分离工艺评价。曾国治等^[12]采用低温变压测量不 同试验参数对 5A 沸石分子筛分离 CH₄/CO,混合气 体的能力影响,结果发现增加吸附压力会降低分离 效果,减小混合气体分离系数,降低吸附温度有利于 CH4/CO,分离,提高混合气体分离系数,但未能从变 压吸附分离工艺角度进行分析评价。王骏成等[22] 选择碳分子筛,以CH₄和CO₅为原料气,对变压吸附 法提纯沼气中生物甲烷的分离性能进行研究。但只

进行了单个吸附塔分离研究且未明确 CO₂浓度组 成。黄知坤等^[23]通过单一吸附柱研究了脉冲方式 进气对 13X 沸石分子筛、椰壳活性炭、5A 分子筛 3 种吸附剂分离 CH₄和 CO₂效果影响,发现随着脉动 频率的增加,吸附分离效果先改善后变差。上述研 究多从单一组分吸附、单个吸附塔分离角度进行研 究,未涉及 CH₄和 CO₂多元组分同时存在的吸附分 离以及多个吸附塔变压吸附分离工艺等方面研究。 为提高驱替煤层气利用率,需开发针对不同 CO₂浓 度范围的驱替煤层气变压吸附浓缩分离工艺。本文 针对驱替煤层气组成特点,研究了 CO₂和 CH₄在吸 附剂上的吸附特性,进行了 CO₂/CH₄变压吸附分离 工艺评价,分析了 CO₂/CH₄分离回收率等经济性指 标,为该技术的放大研究提供指导。

1 CO,分离试验方案

1.1 CO₂吸附特性研究

适合于 CO₂和 CH₄分离的吸附剂有碳分子筛、 沸石分子筛和活性炭等。选取商用碳分子筛 A,利 用比表面吸附仪测定了平均孔径、孔容和比表面积 等吸附性能参数,利用高压热重天平测试了 CO₂/ CH₄在碳分子筛吸附剂上的吸附特性曲线即吸附等 温线。对吸附曲线进行了拟合,测算了碳分子筛对 CO₂/CH₄分离系数。试验条件见表 1。

表1 吸附等温线测定条件

Table 1 Determination	conditions	of	adsorption	isotherm
-----------------------	------------	----	------------	----------

项目	1	2	3	4	5	6
压力/MPa	0.1	0.2	0.4	0.6	0.8	1.0
时间/min	10	20	30	40	50	60

1.2 CO₂分离工艺研究

根据驱替煤层气组成及压力特点,驱替煤层气 CO₂体积分数在 0~20%,设计了 CO₂/CH₄分离工艺 评价试验方案,试验包括 CO₂/CH₄分离和 CH₄提纯 两部分。CO₂/CH₄分离试验原料气模拟驱替煤层气 组成,CH₄提纯试验原料气模拟 CO₂/CH₄分离试验 尾气组成,试验条件见表 2。

表 2 CO₂分离工艺研究试验条件 Table 2 Experimental conditions of CO, separation

Tuble 2 EA	contaitions	or eo ₂ separation		
项目	CO2/CH4分离	CH ₄ 提纯		
CO ₂ 体积分数/%	20	50		
	90	90		
吸附时间/s	120	120		
	150	150		
	180	180		
吸附压力/kPa	150	100		
	350	300		
	600	500		

试验装置为 0.5 Nm³/h 变压吸附评价装置,变 压吸附为四塔真空解吸。采用红外气体分析仪检测 CO₂和 CH₄浓度,通过检测产品气中 CO₂浓度,计算 CH₄回收率和系统处理能力,考察 CO₂/CH₄分离效 果,为驱替煤层气 CO₂/CH₄分离提纯工艺放大研究 提供基础数据。

2 试验结果与分析

2.1 CO₂吸附特性评价结果

适合于 CO₂/CH₄分离的碳分子筛应以微孔为 主,且具有一定量的孔容和比表面积。碳分子筛的 平均孔径为 2.144 nm,以微孔为主,孔容和比表面积 分别达到了 0.245 mL/g 和 689.5 m²/g,有利于 CO₂ 和 CH₄的吸附,适合用于 CO₂/CH₄分离。

CO₂/CH₄在碳分子筛吸附剂上的吸附等温线结 果如图 1 和图 2 所示。

由图 1 可知, 无论是 CO_2 还是 CH_4 , 吸附压力 0.2 MPa 开始, 2 种气体在碳分子筛上吸附逐渐趋于 平衡, 出现了吸附平台, 判断 CO_2 和 CH_4 在碳分子上 的吸附符合 I 型吸附等温线, 采用 Langmuir 方程对 其进行拟合, 得到了饱和吸附量 q_m 和吸附平衡常数 b, 具体参数见表 3。2 种气体拟合后的相关系数 R 均达到了 0.99, 经计算 CO_2/CH_4 平衡 分离系数 3.38。

表 3 Langmuir 方程对碳分子筛吸附等温线拟合参数 Table 3 Fitting parameters for adsorption isotherms of carbon molecular sieves by Langmuir equation

气体组分	$q_{\rm m}/({\rm mol} \cdot {\rm kg}^{-1})$	b	R
CH_4	0.48	11.17	0.99
CO_2	1.27	14.27	0.99

由图 2 可知,在短时间内尤其 8 min 以内, CO₂ 在碳分子筛上吸附内扩散速率远大于 CH₄,即 CO₂ 优先于 CH₄吸附在碳分子筛上。

通过 CO₂吸附特性评价结果初步发现,碳分子 筛吸附剂分离比大,吸附量小,主要基于动力学速率 进行分离,CO₂作为吸附相而获得,CH₄则作为非吸 附相而获得。

2.2 CO₂分离工艺评价

CO₂/CH₄分离工艺评价部分,原料气 CO₂浓度为 20%, CH₄浓度为 80%, 吸附压力为 600、350 和 150 kPa, 吸附时间为 90~180 s。

2.2.1 吸附压力对 CO,分离影响

吸附压力对 CO₂分离的影响如图 3 所示。由图 3(a)可知,原料气 CO,体积分数 20%, CH₄体积分数 80%条件下,产品气中 CO,体积分数均在 1.5% 以 下。随吸附压力增加,产品气中 CO,体积分数先增 加后减小,吸附压力 150 和 600 kPa 时产品气中 CO,体积分数均在1%以下。高吸附压力有助于 CO,在碳分子筛上吸附,随吸附压力增加,CO,在碳 分子筛上的吸附量逐渐增加,吸附压力从 150 kPa 增加到 350 kPa 过程中,CO,和 CH₄吸附量逐渐趋于 平衡,但 CH4吸附量增加速率高于 CO2,未被吸附的 CO2量逐渐增多,产品气中 CO2体积分数升高。吸 附压力从 350 kPa 增大到 600 kPa 过程中, CO, 和 CH₄吸附量趋于平衡,CO₂绝对吸附量高于 CH₄,同 时CO,在碳分子筛上的吸附速度大于CH₄,未被吸 附的 CO,量逐渐减小即产品气中 CO,体积分数逐渐 降低。由图 3(b)可知,随着吸附时间增加,解吸出 的 CO,量增加即尾气中 CO,体积分数增加,为 34%~47%。分离的目标组分 CO2是作为吸附相吸

洁净煤技术

图 3 吸附压力对 CO₂分离影响

Fig.3 Effect of adsorption pressure on CO2 separation

2.2.2 吸附时间对 CO2分离影响

吸附时间对 CO₂分离影响如图 4 所示。由图 4 可知,原料气 CO₂体积分数 20%, CH₄体积分数 80% 条件下,产品气中 CO₂体积分数均在 0.2%以下,从 产品气和尾气中 CO₂体积分数结果直观来看,混合 气组分中 CO₂是作为吸附相吸附在碳分子上, CH₄则

图4 吸附时间对 CO2分离影响

作为非吸附相从吸附塔顶排出,CO₂通过解吸从吸 附塔底排出。结合分离机理可以推断,随着吸附时 间增加,产品气中 CO₂体积分数先增加后减小,但波 动幅度很小,吸附时间 120 s 时产品气中 CO₂体积分 数最高。吸附时间过短气体流速快即 CO₂在碳分子 筛上的停留时间短,只有部分 CO₂完成吸附,其余 CO₂还未完成吸附便离开碳分子筛从吸附塔顶排 出。逐渐增加吸附时间即 CO₂在碳分子筛上的停留 时间增加,足够的停留时间可以保障 CO₂在碳分子 筛孔隙内完成完整吸附,CO₂在碳分子筛上吸附量 增大,未被吸附 CO₂量减小即产品气中 CO₂体积分 数逐渐降低。而尾气中 CO₂体积分数随吸附时间增 加而逐渐增大,停留时间长,CO₂吸附量增加,解吸 出的 CO₂量相应增加,尾气中 CO₂体积分数逐渐增 加,为 33%~45%。

2.3 CO2提纯工艺评价

CO₂/CH₄分离尾气提纯工艺评价部分,原料气 CO₂体积分数为 50%, CH₄体积分数为 50%, 吸附压 力为 500、300 和 100 kPa, 吸附时间为 90~180 s。

2.3.1 吸附压力对 CO2分离影响

吸附压力对 CO₂分离影响如图 5 所示。可知原 料气 CO₂体积分数 50%、CH₄体积分数 50%条件下, 产品气中 CO₂体积分数均在 5.0%以下,即使 CO₂分 压增高,CO₂同样作为吸附相吸附在碳分子筛上再 经过解吸后实现与 CH₄分离。混合组分 CO₂分压增 加后,在同样用量碳分子筛上未被吸附 CO₂量增多,

Fig.5 Effect of adsorption pressure on CO2 separation

即产品气中 CO₂体积分数增加。吸附压力高有利于 CO₂在碳分子筛上吸附,随着吸附压力增加,CO₂分 子在碳分子筛孔隙中吸附量增大,未被吸附的 CO₂ 量逐渐减小,即产品气中 CO₂体积分数逐渐减小。随着吸附压力增加,CO₂在吸附剂上的吸附量均增 加,未被吸附的 CO₂量逐渐减小,产品气中 CO₂体积 分数逐渐降低。随着吸附压力增加,尾气中 CO₂体积分数逐渐增加,分析原因为吸附压力增加,吸附在 碳分子筛上的 CO₂分子增加即 CO₂吸附量增加,解 吸出的 CO₂量增大即 CO₂体积分数逐渐增加,为 52%~78%。

2.3.2 吸附时间对 CO2分离影响

吸附时间对 CO₂分离影响如图 6 所示。可知原 料气 CO₂体积分数 50%、CH₄体积分数 50%条件下, 产品气中 CO₂体积分数均在 1.5%~5.0%,从直观分 离结果来看 CO₂是作为吸附相吸附在碳分子筛上再 经过解吸后实现与 CH₄分离。吸附时间长短意味着 CO₂在碳分子筛上的停留时间不同,决定了 CO₂在 碳分子筛上的吸附量不同。随着吸附时间即停留时 间增加,CO₂在碳分子筛上的吸附量逐渐增加,当 CO₂分压即组分浓度提高时,同样用量碳分子筛条 件下,CO₂更容易穿透吸附塔床层,停留时间越长穿 透的 CO₂量越多,即产品气中 CO₂体积分数逐渐增 加。随着 CO₂分压增加,单位质量碳分子筛对 CO₂ 吸附饱和时间变短,吸附时间逐渐增大过程中未被 吸附的 CO₂则从吸附塔顶作为成品气排出。而尾气

中 CO₂体积分数随吸附时间增加而逐渐增大,单位 质量碳分子筛对 CO₂吸附容量随时间增加而增大, 解吸气即尾气中 CO₂体积分数则越高,为52%~ 75%。

3 CO₂分离提纯工艺

3.1 CO₂分离提纯工艺流程

根据 CO₂/CH₄分离提纯评价结果,初步形成了 驱替煤层气 CO₂/CH₄分离提纯工艺流程,如图 7 所示。

图7 驱替煤层气 CO2/CH4分离提纯工艺流程

Fig.7 Separation and purification process for displacement of coalbed methane by $\rm CO_2/CH_4$

驱替煤层气经过脱水除尘净化处理后进入一级 变压吸附 CO₂/CH₄分离,分离尾气进入二级变压吸 附 CH₄提纯分离,分离产品气与一级分离产品气混 合作为成品气输送至管网,分离尾气排放。

3.2 CO₂分离提纯工艺技术评价

3.2.1 处理量分析

在保证分离效果的前提下,吸附剂对气体处理 能力决定了吸附分离工艺的成本。故考察了不同吸 附时间和吸附压力条件下,碳分子筛对驱替煤层气 处理量的变化。

1)CO2分离工艺处理量评价结果

CO₂/CH₄分离工艺吸附剂的处理量变化结果如 图 8 所示。

由图 8 可知, CO₂、CH₄ 体积分数分别为 20%、 80%时,随着吸附时间增加,吸附剂处理量逐渐降低,随着吸附压力增加,吸附剂处理量逐渐上升。吸 附压力越高,吸附时间越短,吸附剂处理量越大。吸 附压力 600 kPa、吸附时间 120 s 时,处理量达到了 100 Nm³/(h·t)。同时要结合 CO₂和 CH₄分离效果 来综合判断选取合适的吸附分离条件。

2)CO,提纯工艺处理量评价结果

CO₂/CH₄分离工艺吸附剂的处理量变化结果如 图 9 所示。

图8 吸附时间和吸附压力对 CO2分离处理量影响

Fig.8 Effect of adsorption time and adsorption pressure on CO_2 separation capacity

由图 9 可知, CO₂、CH₄ 体积分数均为 50%时, 随着吸附时间增加,吸附剂处理量先降低再升高,随 着吸附压力增加,吸附剂处理量逐渐上升。吸附压 力越高,吸附时间越短,吸附剂处理量越大,吸附压 力 500 kPa,吸附时间 120 s 时,处理量达到了 128 Nm³/(h·t)。同时要结合 CO₂和 CH₄分离效果来 综合判断选取合适的吸附分离条件。

图 9 吸附时间和吸附压力对 CO₂提纯处理量影响 Fig.9 Effect of adsorption time and adsorption pressure on CO₂ purification capacity

3.2.2 回收率计算

考察 CO₂/CH₄分离提纯回收率目的是提高 CH₄ 回收率,不浪费产出气中 CH₄。不同吸附时间和吸 附压力条件下 CH₄回收率不同,根据 CO₂/CH₄分离、 提纯试验结果,分别优选分离效果好的吸附压力和 吸附时间条件计算 CH₄回收率。按驱替煤层气单井 产量 1 200 Nm³/d 即 50 Nm³/h 考虑,计算了物料平 衡及 CH₄回收率,计算结果见表 4。

表 4 CO_2/CH_4 分离提纯回收率

Table 4 Recovery rate of separation and purification of CO_2/CH_4

项目 -	原料气		一级成品气		一级尾气		二级成品气		二级尾气	
	组成/%	流量	组成/%	流量	组成/%	流量	组成/%	流量	组成/%	流量
CH_4	80.00	40.00	99.99	29.48	51.28	10.52	97.03	7.47	23.82	3.06
CO_2	20.00	10.00	0.01	0.00	48.72	10.00	2.97	0.23	76.18	9.77
合计	100	50.00	100	29.48	100	20.52	100	7.70	100	12.82

注:流量单位为 Nm³/h。

表4中一级成品气为CO₂/CH₄分离成品气,一 级尾气为CO₂/CH₄分离尾气,二级成品气为CO₂提 纯成品气,二级尾气为CO₂提纯尾气。整体CH₄回 收率=(29.48+7.47)/40.00×100%=92.375%。

4 结 论

1) CO₂和 CH₄在碳分子上的吸附符合 I 型吸附 等温线,经拟合计算 CO₂/CH₄平衡分离系数 3.38。 碳分子筛吸附剂分离比大,吸附量小,主要基于动力 学速率进行分离,CO₂作为吸附相而获得,CH₄则作 为非吸附相而获得。

2) CO_2/CH_4 在吸附压力 600 kPa, 吸附时间 120 s条件下,经变压吸附分离后产品气中 CO_2 体积 分数在 1%以下;分离尾气在吸附压力 500 kPa, 吸 附时间 120 s下,经变压吸附提纯后,产品气中 CO_2 体积分数在 5%以下。

3)驱替煤层气经净化后可通过变压吸附分离 提纯脱除 CO₂后输送至管网。以单井产量 1 200 Nm³/d 为例,单位吸附剂处理能力在 100 Nm³/h 左 右,CH₄回收率达到 92.375%。

参考文献(References):

- [1] 胡永乐,郝明强,陈国利,等.中国 CO₂驱油与埋存技术及实践
 [J].石油勘探与开发,2019,46(4):716-727.
 HU Yongle, HAO Mingqiang, CHEN Guoli, et al. Technologies and practice of CO₂ flooding and sequestration in China[J].Petroleum
- Exploration and Development, 2019, 46(4):716-727.
 [2] 贾凯锋, 计董超,高金栋,等. 低渗透油藏 CO₂驱油提高原油采 收率研究现状[J].非常规油气, 2019, 6(1):107-115.
 JIA Kaifeng, JI Dongchao, GAO Jindong, et al. The exisiting state of enhanced oil recovery by CO₂ flooding in low permeability reservoirs[J]. Unconventonal Oil & Gas, 2019, 6(1):107-115.
- [3] 桑树勋.二氧化碳地质存储与煤层气强化开发有效性研究述 评[J].煤田地质与勘探,2018,48(5):1-9.
 SANG Shuxun. Research review on technical effectiveness of CO₂ geological storage and enhanced coalbed methane recovery
 [J].Coal Geology & Exploration,2018,48(5):1-9.
- [4] 吕玉民,汤达祯,许浩,等.提高煤层气采收率的 CO₂埋存技术
 [J].环境科学与技术,2011,34(5):95-99.
 LYU Yumin,TANG Dazhen,XU Hao, et al.CO₂ sequestration enhancing coalbed methane recovery [J]. Environmental Science & Technology,2011,34(5):95-99.
- [5] 张文东,唐书恒,张松航,等.基于 CCUS 的深部煤层煤层气采 收及 CO₂封存效果[J].煤炭科学技术,2014,42(8):33-37.
 ZHANG Wendong,TANG Shuheng,ZHANG Songhang, et al.Effect of coalbed methane recovery and CO₂ storage in deep seam based on CCUS[J].Coal Science and Technology,2014,42(8):33-37.
- [6] 魏小芳,罗一箐,刘可禹,等.油气藏埋存二氧化碳生物转化甲 烷的机理和应用研究进展[J].地球科学进展,2011,26(5): 499-506.

WEI Xiaofang, LUO Yijing, LIU Keyu, et al. Advances in mechanism and application of bioconversion of methane from carbon dioxide in oil and gas reservoirs [J]. Advances in Earth Science, 2011, 26(5):499-506.

- [7] 孙晓博.油藏 CO₂生物固定及转化产 CH₄功能基因多样性及体系构建的研究[D].上海:华东理工大学,2013.
 SUN Xiaobo.Study of original microbial community in different oil reservoirs and construction of experimental system with repect to biofixation and bioconversion of CO₂ into CH₄ by using functional genes[D].Shanghai:East China University of Science and Technology,2013.
- [8] 高鹏,崔勖,钟良枢,等.CO/CO₂加氢高选择性合成化学品和液体燃料[J].化工进展,2019,38(1):183-195.
 GAO Peng, CUI Xu, ZHONG Liangshu, et al. CO/CO₂ hydrogenation to chemicals and liquid fuels with high selectivity
 [J].Chemical Industry and Engineering Progress, 2019, 38(1):
- [9] 王野.二氧化碳直接高选择性合成液体燃料[J].物理化学学报,2017,33(12):2319-2320.

183-195.

WANG Ye.Direct conversion of CO_2 into liquid fuels with high selectivity [J]. Acta Physico – Chimica Sinica, 2017, 33 (12):

2319-2320.

[10] 刘学武,杜宝国,武锦涛,等.椰壳活性炭低温变压吸附天然气中CO₂/CH₄实验[J].吉首大学学报(自然科学版),2016,37
 (2):43-47.

LIU Xuewu, DU Baoguo, WU Jintao, et al. Low temperature pressure swing adsorption of CO_2/CH_4 from natural gas by coconut shell activated carbon [J]. Journal of Jishou University (Natural Science Edition), 2016, 37(2):43–47.

- [11] 张云霞,张存泉.吸附处理煤层气中去除二氧化碳的数值模拟
 [J].低温与特气,2011,29(6):26-31.
 ZHANG Yunxia, ZHANG Cunquan. Numerical simulation on removal of carbon dioxide in coal-bed gas with adsorption processing method [J]. Low Temperature and Specialty Gases, 2011, 29 (6):26-31.
- [12] 曾国治,王睿,库尔,等.5A 沸石分子筛低温变压吸附 CO₂/CH₄实验研究[J].广州化工,2019,47(10):26-31.
 ZENG Guozhi, WANG Rui, KU Er, et al. Experimental study on CO₂/CH₄ adsorption of 5A zeolite at low temperature pressure swing[J].Guangzhou Chemical Industry,2019,47(10):26-31.
- [13] 陈敏玲,王兴杰,肖静,等.淀粉基多孔碳材料的制备及其吸附CO₂/CH₄性能[J].化工学报,2018,69(1):455-463.
 CHEN Minling, WANG Xingjie, XIAO Jing, et al. Preparation of porous carbon material from starch and it's performance for separation of CO₂/CH₄[J]. Journal of Chemical Industry and Engineering,2018,69(1):455-463.
- [14] 李雪飞,郭吴乾.甲烷与二氧化碳混合气分离试验研究[J].洁 净煤技术,2018,24(3):35-39.

LI Xuefei, GUO Haoqian. Experimental study on CH_4 and CO_2 mixture separation [J]. Clean Coal Technology, 2018, 24 (3):35–39.

 [15] 凌凡,张忠孝,樊俊杰,等.膜分离法、化学吸收法以及联合法 分离 CO₂/CH₄试验比较[J].动力工程学报,2015,35(3): 245-250.

LING Fan, ZHANG Zhongxiao, FAN Junjie, et al. Experimental study on CO_2/CH_4 separation respectively by membrane, chemical and combined method [J]. Journal of Chinese Society of Power Engineering, 2015, 35(3):245–250.

- [16] 郭瑞乾,张萌,罗居杰,等.酸化多壁碳纳米管/含氟聚砜复合 膜的制备及其对 CO₂/CH₄分离性能研究[J].化工新型材料, 2017,45(1):79-82.
 GUO Ruiqian, ZHANG Meng, LUO Jujie, et al. Fabrication of AT-MWCNT/polysulfone containing fluorine composite membrane for CO₂/CH₄ separation [J]. New Chemical Materials, 2017, 45 (1):79-82.
- [17] 龚金华,王臣辉,卞子君,等.多孔材料表面修饰聚酰亚胺非对称混合基质膜对 CO₂/N₂和 CO₂/CH₄的气体分离[J].物理化 学学报,2015,31(10):1963-1970.
 GONG Jinhua, WANG Chenhui, BIAN Zijun, et al. Asymmetric polyimide mixed matrix membranes with porous materials - modified surfaces for CO₂/N₂ and CO₂/CH₄ separations [J].

Acta Physico-Chimica Sinica, 2015, 31(10): 1963–1970.

[18] 钟栋梁,何双毅,严瑾,等.低甲烷浓度煤层气的水合物法提纯 实验[J].集输与加工,2014,34(8):123-128. ZHONG Dongliang, HE Shuangyi, YAN Jin, et al. An experimental study of using hydrate formation to enhance the methane recovery of low-concentration CBM [J]. Natural Gas Industry, 2014, 34 (8):123-128.

[19] 吴强.煤矿瓦斯水合化分离试验研究进展[J].煤炭科学技术, 2014,42(6):81-85.

WU Qiang.Research progress of separation experiment of mine gas hydrate[J].Coal Science and Technology,2014,42(6):81–85.

- [20] 高霞,刘文新,高橙,等.含瓦斯水合物煤体强度特性三轴试验 研究[J].煤炭学报,2015,40(12):2829-2835.
 GAO Xia,LIU Wenxin,GAO Cheng, et al.Triaxial shear strength of methane hydrate-bearing coal[J].Journal of China Coal Society,2015,40(12):2829-2835.
- [21] 张保勇,程远平,吴强,等.TBAB 溶液中高浓度 CO₂瓦斯水合 分离效果试验[J].煤炭科学技术,2014,42(3):45-48,92.

ZHANG Baoyong, CHENG Yuanping, WU Qiang, et al.Experiment on hydrate separation effect of high CO_2 gas in TBAB solution [J]. Coal Science and Technology, 2014, 42(3):45-48,92.

- [22] 王骏成,胡明振,孙林兵,等.碳分子筛变压吸附提纯沼气的性能[J].化工进展,2015,34(9):3452-3455,3486.
 WANG Juncheng, HU mingzhen, SUN linbing, et al.Biogas purification using carbon molecular sieves by pressure swing adsorption
 [J].Chemical Industry and Engineering Progress, 2015, 34(9): 3452-3455,3486.
- [23] 黄知坤,文炜.脉动流变压吸附分离 CH₄/CO₂实验研究[J]. 化学工程与装备,2020(1):21-23.
 HUANG Zhikun, WEN wei. Experimental study on separation of CH₄/CO₂ by pulsating flow pressure adsorption[J].Chemical Engineering & Equipment,2020(1):21-23.