基于热力学平衡计算的燃煤电厂烟气中 SO₃ 形态研究

于伟静,马超,谭闻濒,崔磊,李昌浩 (中国华电科工集团有限公司,北京 100000)

摘 要: SO_3 是燃煤电厂烟气排放常见污染物之一,对系统设备稳定运行和大气环境质量有较大影响。为深化相关研究,基于热力学及酸露点理论建立了 SO_3 形态转化计算模型,计算了不同烟气温度、湿度和 SO_3 浓度的形态特征,确定了常规燃煤电厂烟气中 SO_3 形态的分布特征,结果表明:燃煤电 厂烟气中 SO_3 主要以 SO_3 气体、 H_2SO_4 气体和 H_2SO_4 气溶胶3 种形态存在,形态转化基于化学反应和物 理反应 2 个过程,化学反应指气态 SO_3 与 H_2O 结合形成气态 H_2SO_4 的过程,物理反应指在烟气温度降 至酸露点以下时气态 H_2SO_4 通过均相或非均相成核形成 H_2SO_4 气溶胶的过程。此外,假设烟气湿度 为 8%,烟气温度低于 202 ℃时,全部以 H_2SO_4 形态存在;烟气温度高于 495 ℃时,全部以 SO_3 形态存 在;烟气温度低于 95 ℃时,基本以 H_2SO_4 气溶胶的形态存在。结合常规燃煤电厂烟气湿度和温度的 分布情况,则 SO_3 形态的分布特征为:烟气脱硝装置前段,主要以 SO_3 气体形态存在;脱硝装置至空预 器段, SO_3 气体和 H_2SO_4 气体共同存在;空预器至脱硫装置段, H_2SO_4 气体和 H_2SO_4 气溶胶共同存在;脱 硫装置后段主要以 H_2SO_4 气溶胶形态存在,粒径<0.1 μ m。

关键词:燃煤电厂;热力学平衡;SO3;硫酸气体;硫酸气溶胶

中图分类号:X511 文献标志码:A 文章编号:1006-6772(2020)06-0189-07

Reseach on SO₃ morphological characteristics in flue gas of coal-fired power plants based on thermodynamic equilibrium calculation

YU Weijing, MA Chao, TAN Wenbin, CUI Lei, LI Changhao

(China Huadian Engineering Co., Ltd., Beijing 100000, China)

Abstract: SO_3 is one of the common pollutants discharged from coal-fired power plants, which has a great impact on the stable operation of system equipment and the quality of atmospheric environment. In order to deepen the relevant research, SO_3 morphologic transformation calculation model was established based on thermodynamics and acid dew point theory. The morphologic characteristics of different flue gas temperature, humidity and SO_3 concentration were calculated, and the distribution characteristics of SO_3 morphologic characteristics in flue gas from conventional coal-fired power plants were determined. The results show that SO_3 in flue gas of coal-fired power plants is mainly composed of SO_3 gas, H_2SO_4 gas and H_2SO_4 aerosol. The transformation of SO_3 is based on chemical reaction and physical reaction. The chemical reaction is that SO_3 gas reacts with H_2O gas to H_2SO_4 gas and the physical reaction is that H_2SO_4 gas condenses to H_2SO_4 aerosol by homogeneous and heterogeneous nucleation when flue gas temperature is lower than dew point, respectively. In addition, assuming the valve of humidity is 8%, when the flue gas temperature is lower than 495 °C and lower than 95 °C, SO_3 exists in the form of H_2SO_4 gas, SO_3 gas and H_2SO_4 aerosol, respectively. Furthermore, combined with the distribution of flue gas humidity and temperature in conventional coal-fired power plants, the distribution characteristics of SO_3 gas, SO_3 gas and H_2SO_4 gas, H_2SO_4 aerosol, H_2SO_4 aerosol exist the section ahead denitrification device, between denitrification device and air preheater, between air preheater and rear section of desulfurization unit, respectively. What is more, the particle size of H_2SO_4 aerosol is less than 0.1 μ m.

Key words:coal-fired power plant; thermodynamic equilibrium; SO3; H2SO4 gas; H2SO4 aerosol

作者简介: チ伟静(1990—), 男, 河北廊坊人, 工程师, 硕士, 从事电力环保工作。 E-mail: 1204293732@ qq.com

引用格式:于伟静,马超,谭闻濒,等.基于热力学平衡计算的燃煤电厂烟气中 SO₃形态研究[J].洁净煤技术,2020,26(6): 189-195.

YU Weijing, MA Chao, TAN Wenbin, et al. Reseach on SO_3 morphological characteristics in flue gas of coal-fired power plants based on thermodynamic equilibrium calculation [J]. Clean Coal Technology, 2020, 26(6): 189–195.

收稿日期:2019-07-13;责任编辑:白娅娜 DOI:10.13226/j.issn.1006-6772.19071301

基金项目:中国华电集团重点科技研发项目(CHDKJ19-01-34)

移动阅读

0 引 言

根据《BP世界能源统计年鉴》(2020年版)^[1], 中国 2019 年发电量为 7 503.4 TWh,煤炭发电量为 4 853.7 TWh,占比为 64.69%,煤炭是我国最主要的 发电能源。鉴于煤炭燃烧过程释放大量污染物,燃 煤电厂是空气污染的重要来源之一。随着超低排放 改造的推进,燃煤电厂常规污染物(SO2、颗粒物、 NO_x) 排放浓度大幅下降^[2], 但非常规污染物(Hg 及 其化合物等重金属、SO,等可凝结颗粒物等)的控制 面临重大挑战^[3]。SO₃是燃煤电厂烟气排放常见污 染物之一,主要来源于烟气中 SO,的氧化,氧化部位 在炉膛和脱硝装置(SCR)处,氧化率分别为 0.5%~ 1.5%和0.25%~1.50%^[4]。随着国内燃煤电厂超低 排放改造的推进^[5-6],因脱硝催化剂用量增加^[7],烟 气中 SO₃浓度增加,加之 SO₂排放浓度降低(不高于 35 mg/m³), SO₃对系统设备和环境影响凸显^[8-13]。 部分国家对燃煤电厂 SO,排放浓度进行限制^[14]:美 国 22 个州对燃煤电厂 SO, 的排放限值提出要求, 其 中14个州的排放限值低于6 mg/m3;德国燃煤电 厂 SO_x(SO₂+SO₃)的排放限值为 50 mg/m³;新加坡 固定源 SO₃ 排放限值为 10 mg/m³;根据 DB 31/ 933-2015《大气污染综合排放标准》,上海市硫酸 雾排放限值为5 mg/m³。

国内外学者对燃煤电厂 SO₃测量技 术^[10,12,15-19]、排放特性^[9,14,20-23]、控制方法^[13,24-30]等 进行了大量理论和试验研究,建立了完整的理论和 方法体系。国外学者提出了 SO₃与水蒸气反应的机 理模型^[31-32],建立了 SO₃在湿法脱硫处行为模 型^[11,33],探究了 SO₃浓度对烟气不透明度的影 响^[11,34],而国内相关研究较少。国内部分学者认为 燃煤电厂烟气中排放的 SO₃为 SO₃气体,缺乏 SO₃形态理论研究。国外学者如 Stuart^[15]、Hardman 等^[21]、Srivastava 等^[22]只进行简单概述,未进行详细 的理论推导。本文基于热力学及酸露点相关理论建 立了 SO₃形态转化计算模型,对燃煤电厂烟气中 SO₃ 的存在形态特征进行研究,为后续研究奠定基础。

1 计算模型

1.1 SO₃形态变化

燃煤电厂烟气中 SO₃形态变化可分为化学反应 和物理反应 2 个过程:化学反应指气态 SO₃与 H₂O 结合形成气态 H₂SO₄的过程;物理反应指烟气温度 降至酸露点以下,气态 H₂SO₄通过均相或非均相成 核形成 H₂SO₄气溶胶的过程。

1.2 化学反应理论

SO3在燃煤烟气中可发生式(1)反应。

$$SO_3 + H_2 O \Longrightarrow H_2 SO_4,$$
 (1)

其反应标准平衡常数为

$$K^{\theta} = \frac{P(\mathrm{H}_{2}\mathrm{SO}_{4}) / P^{\theta}}{[P(\mathrm{H}_{2}\mathrm{O}) / P^{\theta}][P(\mathrm{SO}_{3}) / P^{\theta}]}, \quad (2)$$

式中: K^{θ} 为标准平衡常数; $P(H_2SO_4)$ 为烟气中 H₂SO₄分压, Pa; P^{θ} 为标准状态压力, 1.0×10⁵ Pa; $P(H_2O)$ 为烟气中 H₂O 的分压, Pa; $P(SO_3)$ 为烟 气中 SO₃分压, Pa。

假设 P(H₂SO₄) / P(SO₃) 为 Q, 根据式(2)得

$$Q = K^{\theta} \frac{P(\mathrm{H}_{2}\mathrm{O})}{P^{\theta}} = K^{\theta} \frac{\omega}{100} \frac{p}{P^{\theta}}, \qquad (3)$$

式中, ω 为烟气中水蒸气体积分数,%;p为烟气压力,Pa。

假设 H_2SO_4 所占比例为F,则有

$$F = \frac{Q}{Q+1} \times 100\%_{\circ} \tag{4}$$

标准摩尔反应吉布斯函数为

$$\Delta_{\rm r} G_{\rm m}^{\theta} = - RT \ln K^{\theta} , \qquad (5)$$

式中, $\Delta_{\mathbf{r}}G_{\mathbf{m}}^{\theta}$ 为标准摩尔反应吉布斯函数,J/mol;R为摩尔气体常数,取8.314 $J/(mol \cdot K);T$ 为烟气温 度,K。

由式(2)~(5)可计算出 F,其关键在于标准摩 尔反应吉布斯函数的求解,计算公式为

$$\Delta_{\rm r} G_{\rm m}^{\theta} = \sum \gamma \, \Delta_{\rm f} G_{\rm m}^{\theta} \, , \qquad (6)$$

式中, γ 为反应计量系数; $\Delta_{f}G_{m}^{\theta}$ 为标准摩尔生成吉 布斯函数,J/mol。

$$\Delta_{\rm r} G_{\rm m}^{\theta} = \Delta_{\rm r} H_{\rm m}^{\theta} - T \,\Delta_{\rm r} S_{\rm m}^{\theta} , \qquad (7)$$

式中, $\Delta_r H_m^{\theta}$ 为标准摩尔反应焓,J/mol; $\Delta_r S_m^{\theta}$ 为标准 摩尔反应熵, $J/(mol \cdot K)$ 。

$$\Delta_{\rm r} H_{\rm m}^{\theta} = \sum \gamma \, \Delta_{\rm f} H_{\rm m}^{\theta} \, , \qquad (8)$$

式中, $\Delta_{\rm f} H_{\rm m}^{\theta}$ 为标准摩尔生成焓, J/mol。

$$\Delta_{\rm r} S_{\rm m}^{\theta} = \sum \gamma \, \Delta_{\rm f} S_{\rm m}^{\theta} \, , \qquad (9)$$

式中, $\Delta_{f}S_{m}^{\theta}$ 为标准摩尔生成熵, J/(mol·K)。

 $\Delta_{r}H^{ heta}_{m}$ 、 $\Delta_{r}S^{ heta}_{m}$ 随温度变化的关系式分别为

$$\Delta_{\rm r} H_{\rm m}^{\theta}(T) = \Delta_{\rm r} H_{\rm m}^{\theta}(298.15 \text{ K}) + \int_{298.15}^{T} \Delta_{\rm r} C_{p,\rm m} \mathrm{d}T , \quad (10)$$

$$\Delta_{\rm r} S_{\rm m}^{\theta}(T) = \Delta_{\rm r} S_{\rm m}^{\theta}(298.15 \text{ K}) + \int_{298.15}^{T} \frac{\Delta_{\rm r} C_{p,\rm m}}{T} dT, \quad (11)$$

关键在于 $\Delta_r C_{p,m}$ 求解,其计算式为

$$\Delta_{\rm r} C_{p,{\rm m}} = \sum \gamma C_{p,{\rm m}} , \qquad (12)$$

式中, $\Delta_{\mathbf{r}}C_{p,\mathbf{m}}$ 为标准摩尔反应定压热容, $J/(\text{mol} \cdot \mathbf{K})$; $C_{p,\mathbf{m}}$ 为摩尔定压热容, $J/(\text{mol} \cdot \mathbf{K})$ 。

 $C_{p,m}$ 与T的函数关系式由实测数据拟合得到, 通常呈现二次或三次多项式。

水的比热容与温度的函数关系^[35]为 C (H,O) = 29 16+14 19×10⁻³*T*-2 022×10⁻⁶*T*²

$$L_p(\Pi_2 0) = 29.10 + 14.19 \times 10^{-1} I = 2.022 \times 10^{-1} I_{\circ}^{\circ}$$
(13)

SO₃的比热容与温度的函数关系^[36]为 $C_p(SO_3) = 19.21 + 0.137 4T + 1.176 \times$

 $10^{-4} T^2 - 3.7 \times 10^{-8} T^3$ 。 (14) H₂SO₄的比热容与温度的函数关系式未见相关

文献,根据文献[37],部分温度下气态硫酸的比热 容见表1。

表1 不同温度下气态硫酸的比热容

Table 1Specific heat capacity of sulfuric acidin gaseous form at different temperatures

温度/K	比热容/	温度/K	比热容/		
	$(\mathbf{J} \cdot (\mathbf{mol} \cdot \mathbf{K})^{-1})$		$(\mathbf{J} \cdot (\mathbf{mol} \cdot \mathbf{K})^{-1})$		
298.15	90.235	600	113.427		
300	90.435	700	117.952		
350	95.509	800	121.583		
400	100.041	900	124.596		
450	104.065	1 000	127.160		
500	107.606	1 100	129.382		

利用 Origin 软件进行拟合,如图 1 所示,可以看 出拟合度 0.999 1,则 H₂SO₄比热容与温度的函数关 系为

 $C_p(\mathrm{H}_2\mathrm{SO}_4) = 57.712\ 98 + 0128\ 6T - 5.984\ 68 \times 10^{-5}T^2_{\circ}$ (15)

根据式(12)~(15)可计算标准摩尔反应定压 热容为

$$\Delta_{\rm r} C_{\rm p,m} = 9.342 \ 98 \ -2.32 \times 10^{-2} T \ +5.977 \ 52 \times 10^{-5} \ T^2 \ -3.7 \times 10^{-8} \ T^3 \ _{\odot} \tag{16}$$

1.3 物理反应理论

物理反应的理论基础是酸露点的计算^[15,21],公 式为

1 000

 $T_{\text{dew}} = \frac{1}{2.276 - 0.029 \text{ 4ln} \left[\frac{P(\text{H}_2\text{O}) \cdot 760}{10^5} \right] - 0.085 \text{ 8ln} \left[\frac{P(\text{SO}_3) \cdot 760}{10^5} \right] + 0.006 \text{ 2ln} \left[\frac{P(\text{H}_2\text{O}) \cdot 760}{10^5} \right] \ln \left[\frac{P(\text{SO}_3) \cdot 760}{10^5} \right]^{\circ}$ (17)

2 结果及讨论

2.1 SO,的化学形态变化

2.1.1 模型结果

SO₃化学形态特征如图 2 所示。可知 SO₃的化 学形态与烟气温度、湿度有关,烟气温度越低、湿度 越大,H₂SO₄所占比例越大。烟气湿度为 8%,烟气 温度为 202 \mathbb{C} ,H₂SO₄所占比例为 99.0%;烟气温度 为 495 \mathbb{C} ,H₂SO₄所占比例为 1%。假设计算精度为 ±1%,则当烟气温度低于 202 \mathbb{C} 时,全部以 H₂SO₄形 态存在;烟气温度高于 495 \mathbb{C} 时,全部以 SO₃形态 存在。

2.1.2 模型验证

本模型通过计算标准摩尔反应熵和标准摩尔反 应焓,通过式(7)推导标准摩尔反应吉布斯函数,其 中部分公式为拟合公式。为验证模型推导的精确 性,基于文献 H₂SO₄、SO₃、H₂O 的标准摩尔生成吉布

图 2 SO3化学形态特征

Fig.2 Chemical morphological characteristics of SO3

斯函数(表2)^[38]和式(6),推导标准摩尔反应焓并 与模型计算值进行比对,结果见表3。可知二者具 有一致性,表明相关过程计算合理。

烟气湿度为 8%,不同温度下,模型计算值与文 献[21]相关数值对比如图 3 所示。可知二者具有 一致性,表明本模型推理及计算正确,能用于评估燃 煤电厂烟气中 SO,的化学形态变化。

洁净煤技术

表 2 不同温度下 H_2SO_4 、 SO_3 、 H_2O 的标准摩尔生成吉布斯函数 Table 2 $\Delta_t H_m^0$ of H_2SO_4 , SO_3 and H_2O at different temperatures

化合物 一		标准摩尔生成吉布斯函数/(kJ・mol ⁻¹)						
	300 K	400 K	500 K	600 K	700 K	800 K	900 K	1 000 K
$\rm H_2SO_4$	-652.859	-624.986	-596.048	-566.661	-537.062	-507.364	-476.548	-440.854
SO_3	-370.862	-362.242	-352.668	-342.647	-332.365	-321.912	-310.258	-293.639
H_2O	-228.500	-223.901	-219.051	-214.007	-208.812	-203.496	-198.083	-192.590

表 3 不同公式计算的标准摩尔反应吉布斯函数

Table 3 The calculated $\Delta_{r}G_{m}^{\theta}$ of different formulas

公式 -	标准摩尔反应吉布斯函数/(kJ⋅mol ⁻¹)							
	300 K	400 K	500 K	600 K	700 K	800 K	900 K	1 000 K
(6)	-53.497	-38.843	-24.329	-10.007	4.115	18.044	31.793	45.375
(7)	-53.483	-38.923	-24.534	-10.306	3.772	17.712	31.526	45.230

2.2 SO₃物理形态变化

烟气温度低于酸露点时,部分 H₂SO₄气体会转 化为气溶胶,主要有 2 种作用机制:一是以颗粒物为 凝结核的非均相成核作用;二是通过均相成核形成 H₂SO₄气溶胶^[23]。酸露点变化如图 4 所示,影 响 SO₃物理形态转变的主要因素为:烟气温度、烟气 湿度和 H₂SO₄气体浓度。

Fig.4 Acid dew point diagram

假设烟气湿度为8%,SO₃浓度为20×10⁻⁶,酸露 点为142.3 C。烟气湿度不变,随着烟气温度降低,SO₃饱和浓度降低,原始浓度与饱和浓度的差值 为 H_2SO_4 气溶胶浓度,可计算烟气中 H_2SO_4 气体与 H₂SO₄气溶胶的比例,结果如图 5 所示。可知烟气温 度低于 95 ℃时,基本以 H₂SO₄气溶胶的形式存在。

Fig.5 Physical form characteristics of SO_3

2.3 SO3全流程形态分析

燃煤电厂烟气中 SO₃形态取决于 SO₃浓度、烟气 湿度和烟气温度。煤质不变情况下, SO₃浓度稳定, 且湿法脱硫前段烟气湿度恒定, 形态由烟气温度决 定;湿法脱硫后段由烟气湿度和烟气温度共同决定。 某燃煤电厂某工况下烟温全流程分布如图 6 所示, 结合形态计算模型, 可得到 SO₃全流程形态分布, 如 图 7 所示。可知脱硝装置前段, 主要以 SO₃气体形 态存在; 脱硝装置至空预器段, SO₃气体和 H₂SO₄气 体共同存在; 空预器至脱硫装置段, H₂SO₄气体和 H₂SO₄气溶胶共同存在; 脱硫装置后段主要以 H, SO₄气溶胶形态存在。

 H_2SO_4 气体进入脱硫吸收塔后,烟气快速冷却 至酸露点以下,由于共沸 H_2SO_4 - H_2O 体系具有极低 的 H_2SO_4 平衡压力,导致气相中 H_2SO_4 气体的分压 远大于 H_2SO_4 气体的平衡分压而出现极大的过饱和 度(近 $10^1 \sim 10^2$ 量级),进而发生均相成核,形成大量 亚微米级颗粒(<0.1 µm),在浓度一定的情况下,可 由对光的散射作用,形成蓝色烟羽^[23,30]。

Fig.6 Temperature distribution of flue gas

Fig.7 SO_3 distribution in whole process of flue gas

3 模型的应用性

3.1 SO3气体制备

目前,SO₃气体主要通过 SO₂的氧化进行制备, 包括臭氧法、催化氧化法,受氧化剂或催化剂性能影 响大,且气体中含干扰性气体 SO₂。基于形态变化 理论,可利用 H₂SO₄受热分解制备 SO₃气体。

SO₃气体制备系统如图 8 所示^[39],系统主要由 气体混配装置、气体加热装置、硫酸溶液供给装置、 硫酸溶液汽化装置、硫酸分解装置组成。控制汽化 装置温度在 150~200 ℃,分解装置温度在 500~550 ℃,通过配气装置和硫酸溶液供给装置的调节,可配 置不同浓度、不同载气的 SO₃气体。基于此机理的 SO₃ 气体制备已应用于多项 SO₃测量及控制研究中^[9-10]。

3.2 SO3控制研究

SO₃控制技术分为物理方法和化学方法 2 种,物 理方法包含燃烧前脱硫、型煤固硫和安装 WESP,化 学方法主要是碱性吸收剂烟道喷射技术,而后者应 用最为广泛。该技术在吸收剂种类、注射形式和注 射位置等方面存在多种选择:吸收剂分为钠基、钙 基、镁基等十余种,喷射方式分为浆液喷射和干粉喷 射 2 种,喷射位置包括锅炉内、SCR 装置入口、空预 器入口、除尘器入口、脱硫装置入口 4 种^[28]。

不同形态 SO₃与吸收剂的反应速率不同,进而 影响烟气中 SO₃的去除效率。目前,国内外文献相 关研究不足,可基于 SO₃的形态转化计算模型,开展 相关热力学、动力学及试验研究,弥补相关短板。

4 结 论

1) 燃煤电厂烟气中 SO₃主要以 SO₃气体、H₂SO₄ 气体和 H₂SO₄气溶胶 3 种形态存在,主要取决于烟 气温度、烟气湿度和 SO₃浓度。

2)SO₃的形态变化可分为化学反应和物理反应 2个过程,化学反应指气态SO₃与H₂O结合形成气态H₂SO₄的过程;物理反应指烟气温度降至酸露点 以下,气态H₂SO₄通过均相或非均相成核形成 H₂SO₄气溶胶的过程。

3)烟气湿度为8%,烟气温度低于202℃时,全 部以H₂SO₄形态存在;烟气温度高于495℃时,全部 以SO₃形态存在;烟气温度低于95℃时,基本以 H₂SO₄气溶胶的形式存在。

4) 脱硝装置前段,主要以 SO_3 气体形态存在;脱 硝装置至空预器段, SO_3 气体和 H_2SO_4 气体共同存 在;空预器至脱硫装置段, H_2SO_4 气体和 H_2SO_4 气溶 胶共同存在;脱硫装置后段主要以 H_2SO_4 气溶胶形 态存在,粒径<0.1 μ m。

参考文献(References):

- BP集团.BP世界能源统计年鉴[EB/OL].(2020-06-07).https://www.bp.com/zh_cn/china/home/news/reports.html.
 British Petroleum Company.BP statistical review of world energy [EB/OL].(2020-06-07).https://www.bp.com/zh_cn/china/ home/news/reports.html.
- [2] TANG L, QU J, MI Z, et al. Substantial emission reductions from Chinese power plants after the introduction of ultra-low emissions standards[J]. Nature Energy, 2019, 4(11):929-938.
- [3] 郦建国,朱法华,孙雪丽.中国火电大气污染防治现状及挑战[J].中国电力,2018,51(6):6-14.

LI Jianguo, ZHU Fahua, SUN Xueli. Current status and challenges of atmospheric pollution prevention and control of thermal power plants in China[J]. Electric Power, 2018, 51(6):6–14.

- [4] ZHENG C, LI X, YANG Z, et al. Development and experimental evaluation of a continuous monitor for SO₃ measurement[J]. Energy & Fuels, 2017, 31(9):9684–9692.
- [5] 中华人民共和国国家发展和改革委员会.关于印发《煤电节能减排升级与改造行动计划(2014—2020年)的通知[EB/OL].
 (2014-09-12). http://zfxxgk. nea. gov. cn/auto84/201409/t20140919_1840.htm.
- [6] 中华人民共和国生态环境部.关于印发《全面实施燃煤电厂超低 排放和节能改造工作方案》的通知[EB/OL].(2015-12-11).http://www.mee.gov.cn/gkml/hbb/bwj/201512/t20151215_319170. htm.
- [7] 环境保护部.火电厂污染防治可行技术指南:HJ 2301—2017.[S].北京:中国环境科学出版社,2017.
- [8] CARPENTER A M. Low water FGD technologies [R]. London: IEA Clean Coal Centre, 2012.
- [9] CAO Y,ZHOU H,JIANG W, et al. Studies of the fate of sulfur trioxide in coal-fired utility boilers based on modified selected condensation methods [J]. Environmental Science & Technology, 2010,44(9):3429-3434.
- [10] 张悠. 烟气中 SO₃测试技术及其应用研究[D]. 杭州:浙江大学,2013.
 ZHANG Van Barandan Linitian of SO

ZHANG You. Research and application of SO_3 measurement in flue gas[D].Hangzhou: Zhejiang University, 2013.

- [11] WALSH P M, MCCAIN J D, CUSHING K M. Evaluation and mitigation of visible acidic aerosol plumes from coal fired power boilers
 [R]. US: Environmental Protection Agency, 2006.
- [12] ZHENG C, LI X, YANG Z, et al. Development and experimental evaluation of a continuous monitor for SO₃ measurement[J]. Energy & Fuels, 2017, 31(9):9684–9692.
- [13] WANG Z, HU Y, CHENG X, et al. Study of adsorption characteristics of calcium-based sorbents with SO₃[J]. Energy Procedia, 2018,144:43-49.
- [14] 刘含笑,陈招妹,王少权,等.燃煤电厂 SO₃排放特征及其脱除 技术[J].环境工程学报,2019,13(5):1128-1138.
 LIU Hanxiao, CHEN Zhaomei, WANG Shaoquan, et al. Emission characteristics and removal technology of SO₃ from coal-fired power plants[J]. Chinese Journal of Environmental Engineering, 2019,13(5):1128-1138.
- [15] STUART D. Acid dewpoint temperature measurement and its use in estimating sulfur trioxide concentration[C]//55th Analysis Division Symposium.USA:Curran Associates, Inc., 2010.
- [16] JAWOROWSKI R J, MACK S S. Evaluation of methods for measurement of SO₃/H₂SO₄ in flue gas[J]. Journal of the Air Pollution Control Association, 1979, 29(1);43-46.
- [17] XIONG J, LI Y, WANG J, et al. Evaluation of sulfur trioxide detection with online isopropanol absorption method [J]. Journal of Environmental Sciences, 2018, 72:25–32.
- [18] VAINIO E, FLEIG D, BRINK A, et al. Experimental evaluation and field application of a salt method for SO₃ measurement in flue gases[J]. Energy & Fuels, 2013, 27(5):2767-2775.
- FLEIG D, VAINIO E, ANDERSSON K, et al. Evaluation of SO₃ measurement techniques in air and oxy-fuel combustion
 [J]. Energy & Fuels, 2012, 26(9):5537-5549.

- [20] 杨丁,陈永强,陈威祥,等. SO₃采样技术改进及烟气处理设备 SO₃脱除能力测试[J].中国电力,2018,51(7):157-161.
 YANG Ding, CHEN Yongqiang, CHEN Weixiang, et al. Improvement of SO₃ sampling technology and SO₃ removal capability testing of flue gas treatment equipment[J]. Electric Power,2018,51 (7):157-161.
- [21] HARDMAN R, STACY R, DISMUKES E. Estimating sulfuric acid aerosol emissions from coal-fired power plants [C]//DOE-FETC Conference on Formation, Distribution, Impact, and Fate of Sulfur Trioxide in Utility Flue Gas Streams. Pittsburgh, PA: US Department of Energy-FETC, 1998.
- [22] SRIVASTAVA R K, MILLER C A, ERICKSON C, et al. Emissions of sulfur trioxide from coal-fired power plants[J]. Journal of the Air & Waste Management Association, 2004, 54(6):750-762.
- [23] 李欣怡,潘丹萍,胡斌,等.燃煤烟气中 SO₃迁移转化特性及其 控制的研究现状及展望[J].化工进展,2018,37(12): 4887-4896.

LI Xinyi, PAN Danping, HU Bin, et al. Research status and prospects of migration, transformation and control of SO_3 from coal-fired flue gas[J]. Chemical Industry and Engineering, 2018, 37 (12);4887–4896.

- [24] 胡斌,刘勇,杨春敏,等. 化学团聚促进电除尘脱除烟气中 PM_{2.5}和SO₃[J]. 化工学报,2016,67(9):3903-3909.
 HU Bing,LIU Yong,YANG Chunmin, et al. Simultaneous control of PM_{2.5} and SO₃ by chemical agglomeration collaborative electrostatic precipitation [J]. CIESC Journal, 2016, 67(9): 3903-3909.
- [25] PAN D, YANG L, WU H, et al. Removal characteristics of sulfuric acid aerosols from coal-fired power plants [J]. Journal of the Air & Waste Management Association, 2016, 67 (3): 352-357.
- [26] BENSON L B. Use of magnesium hydroxide for reduction of plume visibility in coal-fired power plants [C]//Proceedings of the EPA-DOE-EPRI-A and WMA Power Plant Air Pollutant Control Mega Symposium.Pittsburgh: A & WMA, 2006.
- [27] 潘丹萍,吴昊,鲍静静,等. 电厂湿法脱硫系统对烟气中细颗 粒物及 SO₃ 酸雾 脱除作用研究[J]. 中国电机工程学报, 2016,36(16):4356-4362.
 PAN Danping, WU Hao, BAO Jingjing, et al. Removal effect of

wet flue gas desulfurization system on fine particles and SO_3 acid mist from coal-fired power plants [J]. Proceedings of the CSEE,2016,36(16):4356-4362.

- [28] 高智溥,胡冬,张志刚,等.碱性吸附剂脱除 SO₃技术在大型 燃煤机组中的应用[J].中国电力,2017,50(7):102-108.
 GAO Zhipu, HU Dong, ZHANG Zhigang, et al. Application of SO₃ removal with alkaline sorbent injection in large capacity coal-fired power plants [J]. Electric Power, 2017, 50 (7):102-108.
- [29] 胡冬,王海刚,郭婷婷,等. 燃煤电厂烟气 SO₃控制技术的研究及进展[J]. 科学技术与工程,2015,35(35):92-99.
 HU Dong, WANG Haigang, GU Tingting, et al. Research and development of mitigating technology of SO₃ in flue gas from coal power plants[J]. Science Technology and Engineering, 2015, 35

194

于伟静等:基于热力学平衡计算的燃煤电厂烟气中 SO,形态研究

(35):92-99.

- [30] ZHENG C, WANG Y, LIU Y, et al. Formation, transformation, measurement, and control of SO₃ in coal-fired power plants[J]. Fuel, 2019,241:327-346.
- [31] LOVEJOY E R, HANSON D R, HUEY L G. Kinetics and products of the gas-phase reaction of SO₃ with water [J]. The Journal of Physical Chemistry, 1996, 100(51):19911-19916.
- [32] REINER T, ARNOLD F. Laboratory investigations of gaseous sulfuric acid formation via SO₃ + H₂O + M→ H₂SO₄ + M: Measurement of the rate constant and product identification[J]. The Journal of Chemical Physics, 1994, 101(9):7399-7407.
- [33] BRACHERT L, KOCHENBURGER T, SCHABER K. Facing the sulfuric acid aerosol problem in flue gas cleaning: Pilot plant experiments and simulation [J]. Aerosol Science and technology, 2013,47(10):1083-1091.
- [34] BLYTHE G, DOMBROWSKI K. SO₃ mitigation guide update
 [R]. US:Electric Power Research Institute, 2004.

 [35] 李松林,周亚平,刘俊吉.物理化学[M].北京:高等教育出版 社,2015.
 LI Songlin, ZHOU Yaping, LIU Junjie. Physical chemistry [M].

Beijing: Higher Education Press, 2015.

- [36] Physical properties Table [EB/OL]. [2020-07-07]. https://www.academia.edu/20319781/Physical_properties_table.
- [37] DOROFEEVA O V, IORISH V S, NOVIKOV V P, et al. NIST-JANAF thermochemical tables. I: Three molecules related to atmospheric chemistry: HNO₃, H₂SO₄, and H₂O₂[J]. Journal of Physical and Chemical Reference Data, 2003, 32(2):879–901.
- [38] MALCOLM Jr W. NIST-JANAF thermochemical tables [M]. US: American Institute of Physics and The American Chemical Society, 1998.
- [39] 于伟静,马超,崔磊,等.SO3标准气体制备装置:209778305U [P].2019-12-13.

YU Weijing, MA Chao, CUI Lei, et al. SO₃ standard gas preparation device:209778305U[P].2019-12-13.