Clean Coal Technology

不同钙基吸附剂捕集 CO₂ 后的硫酸化反应特性研究

孙 锋¹, 申 成², 罗 聪², 罗 童²

(1.中国舰船研究设计中心,湖北 武汉 430064;2.华中科技大学 煤燃烧国家重点实验室,湖北 武汉 430074)

摘 要:钙基吸附剂进行多次 CO₂捕集后,碳酸化效率会大幅衰减,此时的吸附剂能否高效脱硫利用 是值得重点关注的问题。鉴于此,筛选了高性能合成钙基吸附剂和天然石灰石吸附剂,通过热重分析 仪分析对比其在多循环 CO₂捕集后的碳酸化和硫酸化反应性能,采用微粒模型研究其硫酸化反应动 力学特征。结果发现,高性能合成钙基吸附剂的碳酸化反应速率和 CO₂吸附能力明显高于石灰石吸 附剂。在长达 500 循环的 CO₂捕集试验后,高性能合成钙基吸附剂的 CO₂吸附能力比石灰石高 10 倍 以上,其 SO₂吸附能力相较于石灰石提升约 40%。经历多次 CO₂捕集反应循环后,2 种吸附剂的硫酸 化能力均有提升:其中,石灰石吸附剂的提升幅度更大,硫酸化转化率从 26%提升到 35%,而高性能 合成钙基吸附剂的硫酸化转化率则从 38%提升到 43%。通过微粒模型计算发现,2 种吸附剂的硫酸 化反应均是与 SO₂浓度相关的一级反应,多循环捕集 CO₂反应后,石灰石吸附剂的硫酸化反应活化能 下降接近 30%,而高性能合成钙基吸附剂的硫酸化反应活化能只下降了 5%。研究结果说明 2 种不 同钙基吸附剂在进行循环 CO₂捕集后,脱硫能力得到了不同程度的提高,且均可以较好地应用于 SO₂ 的脱除。

关键词:钙基吸附剂;硫酸化;CO,捕集;微粒模型;反应动力学

中图分类号:TK09 文献标志码:A 文章编号:1006-6772(2021)02-0180-07

Study on sulfation reaction characteristics of different

calcium-based sorbents after CO₂ capture

SUN Feng¹, SHEN Cheng², LUO Cong², LUO Tong²

(1. China Ship Development and Design Center, Wuhan 430064, China; 2. State Key Laboratory of Coal Combustion,

Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract: The carbonation conversion of the calcium-based sorbent decreases significantly after multiple CO_2 capture cycles, whether the sorbent can be further used efficiently in desulfurization reaction is important issue which deserves concerns. In order to delve into this issue, the high performance calcium-based sorbent and natural limestone sorbent were selected, the carbonation and sulfation reaction performance after multiple CO_2 capture cycles were analyzed and compared by thermal gravimetric analyzer, and the sulfation kinetics characteristics were studied by particle model. The results showed that the rate of carbonation reaction and CO_2 adsorption capacity of the high performance calcium-based sorbents are much higher than those of limestone adsorbent. After multiple cycles of CO_2 capture test, the CO_2 adsorption capacity of high performance calcium-based sorbents is over 10 times higher than that of limestone, and its SO_2 adsorption capacities was improved by 40% than that of limestone. After multiple CO_2 capture reactions, their sulfation conversion of high performance calcium-based from 38% to 43%. It is found through particle model calculation that the sulfation process of both sorbents is a first-order reaction related to the concentration of SO_2 . After the multiple CO_2 capture cycles, the activation energy of sulfa-

引用格式:孙锋,申成,罗聪,等.不同钙基吸附剂捕集 CO₂后的硫酸化反应特性研究[J].洁净煤技术,2021,27(2):180-186. SUN Feng,SHEN Cheng,LUO Cong, et al.Study on sulfation reaction characteristics of different calcium-based sorbents after CO₂ capture[J].Clean Coal Technology,2021,27(2):180-186.

收稿日期:2020-09-20;责任编辑:白娅娜 DOI:10.13226/j.issn.1006-6772.CCUS20092001

基金项目:国家自然科学基金资助项目(51606076)

作者简介:孙 锋(1985—),男,湖北黄冈人,高级工程师,主要从事船舶动力系统的减排研究。E-mail:sun_feng166@163.com。通讯作者:罗聪, 副教授,主要从事 CO₂捕集利用与封存技术研究。E-mail:cluo@hust.edu.cn;罗童,硕士研究生,主要从事钙基吸 附剂的碳捕集技术研究。E-mail:tongluo@hust.edu.cn。

tion reaction of limestone decreases by nearly 30%, while that of high performance calcium-based sorbent only decreases by 5%. The results indicate that the desulphurization capacity of two different calcium-based sorbents can be improved to different degrees after multiple CO_2 capture cycles, and both of them can be better used for SO_2 removal.

Key words: calcium-based sorbents; sulfation; CO2 capture; particle model; reaction kinetics

0 引 言

利用钙基吸附剂的碳酸化-煅烧循环反应捕集 CO₂的技术,也叫钙循环(Calcium looping),被认为 极具应用潜力的燃烧后 CO,捕集技术之一^[1]。其基 本原理是利用 CaO 与 CO,进行循环碳酸化-煅烧反 应来捕集烟气中的 CO₂。但存在重大问题亟需深入 研究:普通 CaO 吸附剂的 CO,捕集性能会随着循环 反应次数的增加而大幅衰减,且吸附剂捕集烟气中 CO,过程中,会受到微量有害气体的负面影响^[2]。 其中 SO,是对钙循环系统影响最大的有害气体^[3]。 燃煤中含有微量硫分,燃煤烟气中会存在 0.05%~ 0.30%的 SO2。在高温条件下,钙基吸附剂可与低浓 度 SO₂反应生成 CaSO₄。研究发现,吸附剂表面生 成的不易分解的 CaSO₄,不但使吸附剂中 CaO 含量 逐渐下降,且 CaSO₄产物层会使具有多孔结构的 CaO 阻塞,从而导致 CaO 的 CO2 吸附能力大幅 下降[4]。

Sun 等^[5]提出可以先对燃煤烟气脱硫,再将脱 硫后的烟气通入钙基循环系统进行 CO,捕集,增强 钙基吸附剂的循环使用寿命。Manovic 等^[6]发现经 历多次碳酸化-煅烧反应后的钙基吸附剂,其CO,吸 附能力几乎完全丧失,但 SO₂吸附能力却大幅增强。 因此,提出可以先将钙基吸附剂用于循环 CO2 捕集 系统,待 CO,吸附活性丧失后,将其应用于循环流化 床脱硫系统,可提高燃煤尾气的脱硫效率。Li 等^[7] 进一步利用木醋酸改性钙基吸附剂,提高了吸附剂 的循环 CO,吸附能力,发现随着碳酸化-煅烧循环次 数的增加,吸附剂的脱硫能力得以增强,100次循环 CO,捕集后的改性吸附剂的硫酸化转化率可以达到 40%。Qin 等^[8]提出了一种颗粒模型,描述了吸附 剂在循环捕集 CO,过程中煅烧-硫酸化的传热传质 过程,发现反应气氛、颗粒大小对吸附剂的碳酸化-煅烧-硫酸化影响较大。

为了提高钙基吸附剂的 CO₂捕集性能,本课题 组提出了燃烧法制备高性能吸附剂粉末^{[9],}并将吸 附剂粉末与水泥混合挤压得到大颗粒,其循环碳酸 化反应性能会大幅增强^[10-15]。但鲜见针对高性能 钙基吸附剂颗粒经历数百次循环碳酸化--煅烧反应 后,将其用于脱硫的试验研究。鉴于此,本文详细考 察了经历不同循环反应次数的高性能合成钙基吸附 剂颗粒和石灰石吸附剂的硫酸化反应动力学特性, 以获悉两者在硫酸化反应特性上的差异。

1 试 验

1.1 高性能钙基吸附剂的制备方法

制备所用试剂均为分析纯试剂,购置于阿拉丁 试剂有限公司。高性能合成钙基吸附剂颗粒的制备 方法为:首先,将四水硝酸钙、一水柠檬酸溶解于去 离子水中(钙与柠檬酸的摩尔比为1:1,钙与水的 摩尔比为1:10),在80℃恒温水浴条件下搅拌0.5 h得到糊状胶体。然后,将胶体放入600℃马弗炉 内,有机物被点燃,燃烧完毕后得到灰黑色含碳钙基 粉末,再将粉末在850℃氮气氛围中煅烧10 min 即 可得到高性能 CaO 吸附剂粉末,平均粒径约为1 μm。将该粉末黏结为高性能钙基吸附剂颗粒,具体 步骤为:将该粉末与水泥末按质量比3:1 干混合并 机械震荡均匀:加入少量水使之搅拌成泥状,将泥状 混合物于造粒机内挤压成条,并在滚圆机内滚动形 成大颗粒。再将大颗粒在烘箱中于110℃条件下干 燥 8 h,最后在 900 ℃马弗炉内煅烧 1 h 可得到合成 钙基吸附剂大颗粒。该制备方法与本课题组先前研 究中所采用的制备方法相同^[22]。

1.2 吸附剂的硫酸化测试方法

进行硫酸化反应测试前,先将大颗粒(粒径约 2 mm)磨碎。本文测试了粒径 250~400 µm 颗粒的 相关物理与化学特性。采用赛默飞 Cahn 121 热重 分析仪(TGA, thermogravimetric analysis)进行了吸附 剂硫酸化反应动力学试验,步骤为:将 20 mg 左右的 吸附剂放入样本篮中,初始气流为 80 mL/min N₂, 从室温以 20 °C/min 升温速率加热到 850 °C,并维 持恒温 10 min,使吸附剂中钙基物质完全分解成 CaO。将试验气体切换为 100 mL/min 的 N₂、 O₂、SO₂混合气流并进行 CaO 硫酸化反应(气氛为 0.2% SO₂与 5% O₂,由 N₂平衡)。CaO 硫酸化效率 用式(1)计算(基于 CaO 的硫酸化产物全为 CaSO₄, 无 CaSO₃)。先前研究发现,温度超过 740 °C 时, CaO的硫酸化产物全为 $CaSO_4$ ^[16]。

$$X(\text{CaSO}_4) = \frac{m' - m_0}{m_0 b} \frac{M(\text{CaO})}{M(\text{SO}_3)}, \quad (1)$$

其中, $X(CaSO_4)$ 为 CaO 的硫酸化转化率;m'为吸附 剂硫酸化后的质量, $g;m_0$ 为吸附剂初始煅烧后的质 量, $g;M(SO_3)$ 和M(CaO)分别为 SO₃和 CaO 的摩尔 质量,g/mol;b为吸附剂中 CaO 质量比。实际烟气 中,硫酸化时除了 SO₂和 O₂,还有 CO₂和 HCl,但试 验时加入这些气氛会对吸附剂的硫酸化性能测试产 生干扰,因此本文不考虑 CO₂和 HCl 对硫酸化的 影响。

1.3 吸附剂的循环碳酸化--煅烧测试方法

吸附剂的碳酸化-煅烧循环反应试验仍采用 TGA 分析仪测试,步骤为:将 20 mg 左右吸附剂放入 样本篮中, 通入 100 mL/min N₂, 从室温温以 20 ℃/min 升温速率加热 850 ℃, 并保持 10 min, 使吸 附剂中的钙基物质完全分解成 CaO。

碳酸化-煅烧循环反应步骤为:将 100 mL/min N_2 切换为 100 mL/min CO_2 进行碳酸化反应,反应时 间 3 min;随后,将 100 mL/min CO_2 切换为 100 mL/min N_2 进行煅烧反应,反应时间 3 min,由此完 成一次循环碳酸化-煅烧试验,反复循环直至完成 所需循环次数。

试验气氛条件为理想条件下的气氛:碳酸化为 100% CO₂,煅烧为 100% N₂,硫酸化为 0.2% SO₂、 5% O₂和 94.8% N₂。选择理想气氛条件可以有效排 除杂质成分的干扰。实际烟气中,碳酸化时 CO₂浓 度 12% 左右产生较大影响的杂质气体是 SO₂和 HCI,但试验时加入这些气氛会对吸附剂的循环性 能测试产生干扰。煅烧时主要气氛为 CO₂,如果使 用该条件,热重分析仪中的煅烧温度需设置在 950 ℃以上,碳酸化时又需要较长时间的降温处理,与实 际条件不一致。为了便捷地测试吸附剂的循环反应 性能,将热重分析仪设置在 850 ℃进行等温碳酸 化-煅烧反应。

2 试验结果与讨论

2.1 钙基吸附剂的 CO₂和 SO₂吸附特性

样品的 X 射线衍射图谱如图 1 所示,显示了原 料和合成钙基吸附剂颗粒的主要物相组分。吸附剂 主要成分是 CaO,水泥主要成分是 CaAl₂O₄ 和 Ca₁₂Al₁₄O₃₃。之前研究认为 Ca₁₂Al₁₄O₃₃是一种良好 的能延缓 CaO 晶粒之间发生烧结的原子骨架物,在 800~1 000 °C,钙和铝的混合氧化物会生成稳定的 Ca₁₂Al₁₄O₃₃。

prepared samples after calcination^[22]

本文煅烧温度为900℃,由图1可知,合成钙基 吸附剂颗粒的主要组分是CaO和Ca₁₂Al₁₄O₃₃,说明 水泥中大部分CaAl₂O₄和CaO发生反应,生成了 Ca₁₂Al₁₄O₃₃,研究结果与之前研究一致,具体反应为

 $5CaO+7CaAl_2O_4 = Ca_{12}Al_{14}O_{33}\circ$ (2)

合成钙基吸附剂颗粒与普通天然石灰石的初次 碳酸化反应动力学特征如图 2 所示,可知 2 种吸附 剂在初始化学反应控制阶段的反应速率较快,且大 部分反应均在化学反应控制阶段完成。特别是合成 钙基吸附剂颗粒,不仅反应速率高于石灰石,还在化 学反应控制阶段完成了绝大部分的碳酸化反应,占 整个碳酸化过程的 90%,产物层扩散反应阶段的碳 酸化程度约为 10%。说明合成钙基吸附剂颗粒的 反应活性很高。

2种吸附剂第20次碳酸化反应动力学特征如 图3所示,可知其碳酸化速率相比初次碳酸化反应 发生明显变化。2种吸附剂的碳酸化反应过程仍包 含化学反应控制阶段和产物层扩散控制阶段,但合 成吸附剂颗粒在化学反应控制阶段结束时达到的碳 酸化程度是石灰石的3倍,且合成吸附剂颗粒在产 物层扩散控制反应阶段仍可进行一定程度的碳酸化 反应。

相比之下,天然石灰石在化学反应控制阶段的 反应速率和碳酸化转化率均较低,且在产物层扩散

182

at the 20th carbonation reaction^[22]

控制阶段的反应程度很低,质量变化曲线几乎与横 坐标轴平行,这说明石灰石吸附剂内部的烧结与结 块严重,阻碍了其产物层扩散反应过程。

2种吸附剂的碳酸化-煅烧循环反应性能如图 4 所示,可知合成钙基吸附剂颗粒的循环 CO。捕捉 能力相对于天然石灰石有巨大优势,在500次循环 反应后,相同单位质量新型钙基吸附剂的 CO。吸附 能力是石灰石吸附剂的10倍,吸附剂在一次循环中 分别能够吸附 CO, 0.171 g/g 和 0.016 g/g。石灰石 吸附剂在多次碳酸化和煅烧反应后,孔隙结构发生 明显变化,其 CO,吸附性能已经几乎为 0,原因是吸 附剂内的介孔大幅减少,吸附剂的碳酸化反应取决 于介孔的容积大小。合成钙基吸附剂颗粒在多次循 环反应后,维持了较好的碳酸化反应活性,而石灰石 吸附剂在多次循环后几乎丧失了碳酸化反应活性。 无论是石灰石吸附剂还是合成钙基吸附剂颗粒,其 CO,捕集能力下降幅度最大的区间是 0~100 次循 环,而在100次循环反应之后,其CO2捕集能力相对稳 定。吸附剂的烧结被认为是造成钙基吸附剂活性下降 的根本原因[2],但当吸附剂在高温条件下经历了较长 时间反应后,其吸附剂的内部形成了相对稳定的硬骨 架,可以抵御吸附剂的进一步烧结[17],所以2种吸附剂 在100次循环后,其CO,捕集能力保持稳定。

Laursen 等^[18]提出钙基吸附剂的硫酸化反应可 分为3种类型:均匀硫酸化、内通硫酸化和核壳硫酸 化。对于均匀硫酸化类型的吸附剂,其硫酸化反应 速率不随粒径的变化而变化,而另外2种类型硫酸 化的主要特点是,硫酸化反应速率受吸附剂颗粒影 响比较明显。为了判定本文2种钙基吸附剂的硫酸 化反应类型,选取了不同粒径的2种钙基吸附剂进 行硫酸化反应动力学测试,如图5所示。可知合成 钙基吸附剂颗粒的硫酸化反应速率不受颗粒粒径的 影响,说明新型钙基吸附剂的硫酸化反应类型是均 匀硫酸化类型。对于石灰石吸附剂,其硫酸化反应 速率受颗粒粒径影响不大,只在 400~600 µm 较大 粒径下,其硫酸化反应速率略下降,总体来说,本文 所选石灰石仍属于均匀硫酸化类型的吸附剂。合成 钙基吸附剂颗粒的硫酸化反应速率大于石灰石吸附 剂,这是由于新型吸附剂具有较高的反应活性。

2.2 多次钙循环后吸附剂的 SO₂吸附特性

石灰石吸附剂在经历过 0、100 和 500 次 CO₂吸 附/再生反应后硫酸化转化率与时间的关系如图 6 所示,可知石灰石的硫酸化反应速率随着其经历过 CO₂吸附/再生反应循环次数的增加而增加,与之前 研究一致^[19],这是由于石灰石吸附剂在多次碳酸化 和煅烧反应中,介孔大幅减少,大孔增加所致。介孔 有利于碳酸化反应,大孔有利于硫酸化反应^[20]。

合成钙基吸附剂颗粒在 0、100 和 500 次 CO₂吸附/再生反应后硫酸化转化率与时间的关系如图 7 所示,结果与石灰石吸附剂的曲线略有不同。

虽然合成钙基吸附剂颗粒的硫酸化速率高于石 灰石吸附剂,但其经历过多次 CO₂吸附/再生反应后 的硫酸化反应速率提升幅度并不明显,特别是经历 了 100 次和 500 次 CO₂吸附/再生反应后的硫酸化 曲线趋于一致。这与合成钙基吸附剂本身的物理特 性相关,之前研究发现,合成钙基吸附剂颗粒在多次

Fig.6 Sulfation reaction rate of limestone

图 7 合成吸附剂颗粒(经历多次碳酸化反应后) 的硫酸化反应速率

Fig.7 Sulfation reaction rate of synthetic sorbent particles after multiple carbonation reaction

碳酸化/煅烧循环反应中,其微观结构保持相对稳 定^[9]。在高温循环反应中仍稳定的微观结构使得 新型吸附剂不会和石灰石一样不断形成大孔丰富的 微观结构,从而使合成钙基吸附剂颗粒在经历多次 CO₂吸附/再生反应后,硫酸化反应性能提升幅度 不大。

2.3 吸附剂的硫酸化反应动力学

为了进一步理解 2 种钙基吸附剂的硫酸化反应 动力学特性,本文采用了 Szekeley 和 Evans^[21]提出 的微粒模型对新鲜吸附剂和经历了多次 CO₂吸附/ 再生反应后吸附剂的硫酸化反应进行了反应动力学 特性研究。该模型认为多孔颗粒是由一定形状的微 粒组成,是一群微粒集合体。由于本文所用 2 种吸 附剂的硫酸化类型都是均匀型,硫酸化速率不受吸 附剂粒径大小影响,所以能采用微粒模型模拟其硫 酸化反应过程。

根据微粒模型,吸附剂在化学反应控制阶段转 化率为

$$\frac{\mathrm{d}X}{\mathrm{d}t \, (1-X)^{2/3}} = 3r,\tag{3}$$

其中,r为吸附剂的本征反应速率;t为反应时间;X 为吸附剂的转化率,将式(3)积分得

1

$$-(1-X)^{1/3} = rt_{\circ}$$
(4)

由式(4)可知,1-(1-X)^{1/3}与反应时间的函数 可求出钙基吸附剂本征反应速率。2 种吸附剂的 1-(1-X)^{1/3}与反应时间的函数关系如图 8 所示。发 现 2 种吸附剂在化学反应控制阶段的微粒模型曲线 均是线性的,拟合直线的斜率是吸附剂的本征表面 反应速率 r。

吸附剂的本征表面反应速率基本不变,其初始 状态下的本征表面反应速率 r₀可代表其本征表面反 应速率,即

$$r_0 = r_0 \tag{5}$$

气固反应速率 R 为

$$R = \frac{\mathrm{d}X}{\mathrm{d}t(1-X)}$$
(6)
式(6)可表示为能量守恒形式

$$R = \frac{\mathrm{d}X}{\mathrm{d}t(1-X)} = M(\operatorname{CaO})k_{\mathrm{s}} (P(\operatorname{SO}_{2}) - P_{\mathrm{eq}}(\operatorname{SO}_{2}))^{n'}S,$$

(7) min •

其中, k_s 为本征反应速率常数, mol/(m² · min · Paⁿ); n'为 CaO-SO₂反应的级数; $P(SO_2)$ 为系统的 SO₂分压, Pa; $P_{eq}(SO_2)$ 为 CaO-SO₂反应的平衡 SO₂分压, Pa, 由于 850 °C, $P_{eq}(SO_2)$ 小于 1.01 Pa, 所以可忽略不计。

式(3)和式(7)可以推出

 $R=3r(1-X)^{-1/3}=M(CaO)k_sP(SO_2)^{n'}S$,(8) 其中,S 为吸附剂的表面积,m²/g,对于吸附剂的初 始状态 t=0时,表面积为 S_0 (由试验结果显示煅烧 后石灰石和合成吸附剂颗粒的表面积分别 12、 15 m²/g),代入式(8)得

$$R_0 = \frac{\mathrm{d}X}{\mathrm{d}t} \mid_{t=0} = 3r_0 = M(\text{CaO})k_{\mathrm{s}}P(\text{SO}_2)^{n'}S_0, \quad (9)$$

将式(9)进行对数变换后,可得

$$\ln r_0 = n' \ln P(SO_2) + \ln(M(CaO)k_sS_0/3)_{\circ} (10)$$

184

从 $\ln r_0$ 与 $\ln P(SO_2)$ 的斜率可以求出吸附剂硫酸化反应与 SO_2 分压相关的反应级数。

常压下,硫酸化温度为 850 ℃时,不同 SO₂体积 浓度(0.1%、0.2%、0.3%、0.4%)对 2 种吸附剂的 ln r_0 与 ln $P(SO_2)$ 的关系如图 9 所示。可知 2 种吸 附剂的 CaO-SO₂反应级数为 1.03~1.09。

图9 2种吸附剂的微粒模型 CaO-SO2反应级数曲线

Fig.9 CaO-SO₂ reaction order curves of two sorbents based on particle model

由于2种吸附剂的反应级数接近一级反应,可

以近似认为 n'=1。本征反应速率常数可表示为

$$k_{\rm s} = k_0 \exp\left(\frac{-E}{R_{\rm t}T}\right) , \qquad (11)$$

其中, k_0 为吸附剂反应速率的指前因子,mol/(m² · s); *E* 为钙基吸附剂的活化能, J/mol; R_1 为气体常数, 8.314 J/(mol·K); *T* 为温度, K。代入式(11)得

$$\ln r_0 = \ln \left[P(\mathrm{SO}_2) M(\mathrm{CaO}) k_0 S_0 / 3 \right] - \frac{E}{R_1 T^\circ}$$

(12)

式(12)为 Arrhenius 方程,根据 ln r_0 与 T^{-1} 的函数图可以拟合出钙基吸附剂的活化能与反应速率的指前因子。SO₂体积分数为 0.2%时,在不同硫酸化温度条件下(750、800、850、900 ℃),2 种钙基吸附剂的 ln r_0 与 T^{-1} 的函数关系如图 10 所示。

根据图 10 拟合曲线的斜率可以分别求得 2 种 钙基吸附剂的活化能。对于合成钙基吸附剂颗粒在 初始状态下和经历了 500 次 CO₂捕集反应后的活化 能分别为 43 和 41 kJ/mol;而石灰石吸附剂在初始 状态下和经历了 500 次 CO₂捕集反应后的活化能分 别为 64 和 47 kJ/mol。石灰石吸附剂在多次碳酸 化/煅烧循环后的硫酸化反应活化能的下降幅度明 显大于合成钙基吸附剂颗粒。说明多次碳酸化/煅 烧循环反应对石灰石吸附剂的硫酸化反应活性的影 响明显,而对合成钙基吸附剂颗粒的硫酸化反应影

of two sorbents based on particle model

响较小。合成钙基吸附剂颗粒在多次 CO₂捕集利用 后,其 SO₂吸附性能仍较强。

3 结 论

1)100次循环碳酸化--煅烧反应后,高性能合成 钙基吸附剂的 CO₂吸附能力是石灰石的 10 倍以上; 但高性能合成钙基吸附剂的 SO₂吸附能力是石灰石 的 1.4 倍。

2)2种吸附剂都属于均匀硫酸化类型的吸附剂,其硫酸化反应速率不受吸附剂粒径大小的影响。 但经历多次碳酸化/煅烧反应后,其硫酸化反应性能的提升幅度不同。石灰石吸附剂的硫酸化转化率从 26%提升到35%,高性能合成钙基吸附剂的硫酸化 转化率从38%提升到43%。

3)2种吸附剂的硫酸化过程均是与 SO₂浓度相关的一级反应,多循环捕集 CO₂反应后,石灰石吸附剂的硫酸化反应活化能下降幅度接近 30%,而高性能合成钙基吸附剂的硫酸化反应活化能只下降了 5%。说明 2 种钙基吸附剂进行了多次捕集 CO₂反应后,均能较好地应用于 SO₂的脱除。

参考文献(References):

- BLAMEY J, ANTHONY E J, WANG J, et al. The calcium looping cycle for large-scale CO₂ capture [J]. Progress in Energy and Combustion Science, 2010, 36:260-279.
- [2] STAMNORE B R, GILOT P. Review-calcination and carbonation of limestone during thermal cycling for CO₂ sequestration[J]. Fuel Processing Technology, 2005, 86:1707-1743.
- [3] ALONSO M, CORDERO J M, ARIAS B, et al. Sulfation rates of particles in calcium looping reactors[J]. Chemical Engineering & Technology, 2014, 37:15-19.
- [4] MANOVIC V, ANTHONY E J. Competition of sulphation and carbonation reactions during looping cycles for CO₂ capture by CaO-

based sorbents [J]. Journal of Physical Chemistry A, 2010, 114: 3997-4002.

- [5] SUN P, GRACE J R, LIM C J, et al. Removal of CO₂ by calciumbased sorbents in the presence of SO₂[J]. Energy & Fuels, 2007, 21:163-170.
- [6] MANOVIC V, ANTHONY E J, LONCAREVIC D. SO₂ retention by CaO-based sorbent spent in CO₂ looping cycles [J]. Industrial & Engineering Chemistry Research, 2009, 48:6627-6632.
- [7] LI Y, WANG W, XIE X, et al. SO₂ retention by highly cycled modified CaO-based sorbent in calcium looping process[J]. Journal of Thermal Analysis and Calorimetry, 2014, 116:955-962.
- [8] QIN C, HE D, ZHANG Z, et al. The consecutive calcination/sulfation in calcium looping for CO₂ capture: Particle modeling and behaviour investigation [J]. Chemical Engineering Journal, 2018, 334:2238-2249.
- [9] LUO C, ZHENG Y, ZHENG C G, et al. Manufacture of calciumbased sorbents for high temperature cyclic CO₂ capture via a sol-gel process[J]. International Journal of Greenhouse Gas Control, 2013, 12:193-199.
- [10] AKGSORNPEAK A, WITOOT, MUNGCHAROE T, et al. Development of synthetic CaO sorbents via CTAB – assisted sol – gel method for CO₂ capture at high temperature [J]. Chemical Engineering Journal, 2014, 237:189–198.
- [11] XU P, XIE M, CHENG Z, et al. CO₂ capture performance of CaObased sorbents prepared by a sol-gel method [J]. Industrial & Engineering Chemistry Research, 2013, 52:12161-12169.
- [12] BRODA M, KIERZKOWSKA A M, MÜLLER C R. Application of the sol – gel technique to develop synthetic calcium – based sorbents with excellent carbon dioxide capture characteristics[J]. Chem. Sus. Chem., 2012, 5:411–418.
- [13] SEDGHKERDAR M H, MAHINPEY N, SUN Z, et al. Novel synthetic sol - gel CaO based pellets using porous mesostructured

silica in cyclic CO₂ capture process [J]. Fuel, 2014, 127: 101-108.

- [14] SANTOS E T, ALFONSÍN C, CHAMBEL A J S, et al. Investigation of a stable synthetic sol-gel CaO sorbent for CO₂ capture [J]. Fuel, 2012,94:624-628.
- [15] KIERZKOWSKA A M, MULLER C R. Development of calciumbased, copper-functionalised CO₂ sorbents to integrate chemical looping combustion into calcium looping[J]. Energy & Environmental Science, 2012, 5:6061-6065.
- [16] MARSH D W, ULRICHSON D L. Rate and diffusional study of the reaction of calcium oxide with sulfur dioxide [J]. Chemical Engineering Science, 1985, 40:423-433.
- [17] MANOVIC V, ANTHONY E J. Thermal activation of CaO-based sorbent and self-reactivation during CO₂ capture looping cycles
 [J]. Environmental Science & Technology, 2008, 42: 4170-4174.
- [18] LAURSEN K, DUO W, GRACE J R, et al. Sulfation and reactivation characteristics of nine limestones [J]. Fuel, 2000, 79: 153-163.
- [19] MANOVIC V, ANTHONY E J. SO₂ retention by reactivated CaObased sorbent from multiple CO₂ capture cycles[J]. Environmental Science & Technology, 2007, 41:4435-4440.
- [20] LI Y, BUCHI S, GRACE J R, et al. SO₂ removal and CO₂ capture by limestone resulting from calcination/sulfation/ carbonation cycles[J]. Energy & Fuels, 2005, 19:1927-1934.
- [21] SZEKELY J, EVANS J W. A structural model for gas-solid reactions with a moving boundary [J]. Chemical Engineering Science, 1970, 25:1091-1107.
- [22] LUO C, ZHENG Y, XU Y Q, et al. Cyclic CO₂ capture characteristics of a pellet derived from sol-gel CaO powder with Ca₁₂Al₁₄O₃₃ support[J]. Korean Journal of Chemical Engineering, 2015, 32 (5):934-938.