分解炉空气分级燃烧及 NO_x 排放特性研究

朱书骏1,2,朱建国1,3

(1. 中国科学院 工程热物理研究所,北京 100190;2. 中国科学院 力学研究所 高温气体动力学国家重点实验室,北京 100190;3. 中国科学院大学,北京 100049)

要:随着我国经济的飞速发展,作为重要基础材料的水泥产品需求量极大且趋于稳定。水泥生产 摘 过程中的 NO.排放与燃煤火电厂和汽车尾气产生的 NO.排放已成为空气污染的主要来源,而分解炉 是降低水泥生产工艺中 NO.排放的有效设备。笔者在引入高温烟气的模拟分解炉内进行空气分级燃 烧试验,研究配风位置、配风比例以及石灰石/煤比例对分解炉内燃烧和 NO,排放特性的影响规律。 试验稳定过程中,高温烟气发生装置的给煤量和配风量保持不变。此时,高温烟气发生装置的时间平 均温度为 911 ℃,其产生的高温烟气温度稳定在 750 ℃左右,高温烟气中 NO,主要以 NO 和 N,O 的形 式存在,其浓度分别为261.49×10-6和12.96×10-6。该股高温烟气将模拟实际回转窑产生的烟气进入 分解炉内。在分解炉的上部区域(距离顶部 0~2 000 mm 区域)的温度为 800~1 000 ℃,与实际分解 炉运行温度一致,排放烟气中 NO,主要以 NO 和 N,O 形式存在。随着中间配风位置的下移,煤粉燃烧 放热区域下移,而顶部区域的石灰石吸热量变化较小,则原有热量平衡被打破且原有吸热量高于现有 放热量,导致顶部区域内燃烧温度降低。此时,还原气氛中煤粉燃烧和石灰石分解反应时间均变长, 导致 NO,的还原反应更加充分。但石灰石分解产生的氧化钙(CaO)作为中间产物会促进 NO 的生成 反应,其反应时间增加也促进了 NO 的生成;另一方面,石灰石作为催化剂参与焦炭和挥发分还原 NO 的反应过程,分解炉顶部区域的温度下降使得该还原反应变弱。综上,NO的最终排放浓度是以上反 应的综合结果。随着配风位置的下移,该变化对 NO 的生成作用更加明显,故 NO 的排放浓度逐渐升 高。当一级风量与二级风量的配风比例降低时,分解炉上部区域的煤粉燃烧份额减少和石灰石分解 量降低,而分解炉下部区域的煤粉燃烧份额增加和未分解的石灰石份额增加,但石灰石的吸热增加量 高于燃烧增加份额的放热量,因此分解炉内整体温度均降低。分解炉内 NO 浓度是由石灰石催化的 氧化过程和还原过程综合决定的。一级风量变小时,尾部 CO 浓度随之增加,烟气中 NO 浓度呈现降 低的趋势。当石灰石/煤比例增加时,分解炉内沿程温度逐渐下降。随着石灰石给粉量增加,分解炉 内石灰石受热分解产生的 CaO 浓度增加, CaO 催化 NO 还原反应更剧烈,从而 NO 浓度逐渐降低。而 石灰石给粉量增加和分解炉温度降低的过程导致尾部的 CO 浓度升高。

关键词:分解炉;空气分级燃烧;燃烧温度;NO,排放

中图分类号:TQ172.9;X781.5 文献标志码:A 文章编号:1006-6772(2020)01-0052-07 Experimental study on air-staging combustion and NO_r

emission characteristics in cement precalciner

ZHU Shujun^{1,2}, ZHU Jianguo^{1,3}

(1.Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China; 2. State Key Laboratory of High-temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China)

收稿日期:2019-11-26;责任编辑:白娅娜 DOI:10.13226/j.issn.1006-6772.19112601

基金项目:国家重点研发计划资助项目(2016YFB0601503)

引用格式:朱书骏,朱建国.分解炉空气分级燃烧及 NO_x排放特性研究[J].洁净煤技术,2020,26(1):52-58.

ZHU Shujun, ZHU Jianguo. Experimental study on air-staging combustion and NO_x emission characteristics in cement precalciner [J]. Clean Coal Technology, 2020, 26(1):52-58.

作者简介:朱书璇(1992—),男,黑龙江七台河人,博士,研究方向为固体燃料的清洁高效利用。E-mail:zhushujun@iet.cn。 通讯作者:朱建国,副研究员,从事固体燃料的清洁高效利用研究。E-mail:zhujianguo@iet.cn

朱书骏等:分解炉空气分级燃烧及 NO, 排放特性研究

Abstract: With the rapid development of China's economy, as an important basic material, the demand for cement products is huge and tends to be stable. The NO, emission from cement production process and coal-fired power plants and automobile exhaust has become the main source of air pollution, and decomposition furnace is an effective equipment to reduce NO, emission in cement production process. The air-staging combustion experiments were carried out in a simulated precalciner with high-temperature flue gas, and the effects of air distribution position, air distribution ratio and limestone /coal ratio on combustion and NO, emission characteristics in cement precalciner were investigated. During the stable test, the coal feeding and air distribution of the high-temperature flue gas generator remain unchanged. At this time, the time-average temperature of the high-temperature flue gas generator is 911 °C , and the temperature of the high-temperature flue gas produced is stable at approximately 750 °C. The NO, in the high-temperature flue gas mainly exists in the form of NO and N_2O , and the concentration is 261.49×10^{-6} and 12.96×10^{-6} , respectively. The high-temperature flue gas will simulate the actual flue gas from the rotary kiln into the decomposition furnace. The temperature in the upper part of the calciner $(0-2\ 000\ \text{mm}\ \text{from the top})$ is from 800 to 1 000 °C, which is consistent with the actual operation temperature of the calciner. NO_x in the exhaust gas mainly exists in the form of NO and N₂O. As the position of the middle air distribution moves down, the exothermic region of pulverized coal combustion moves down, while the heat absorbed by limestone in the top region changes a little, so the original heat balance is broken and the original heat absorbed is higher than the exothermic quantity, causing the combustion temperature in the top zone to drop. At this time, the reaction time of coal combustion and limestone decomposition becomes longer in reducing atmosphere, which leads to more sufficient reduction of NO_x. However, calcium oxide(CaO) produced by limestone decomposition, as an intermediate product, can promote the formation of NO, and its reaction time also promotes the formation of NO. On the other hand, limestone is used as a catalyst in the reduction of NO by char and volatiles, the reduction of NO is weakened due to the decrease in temperature in the top zone of the decomposition furnace. To sum up, the final emission concentration of NO is the combined result of the above reactions. As the position of air distribution moves down, the effect of those changes on NO production becomes more obvious, so the concentration of NO emission increases gradually. When the ratio of the first air flow rate to the second air flow rate is reduced, the coal combustion rate and limestone decomposition rate in the upper part of the calciner decrease, and the proportion of pulverized coal combustion and the proportion of undecomposed limestone in the lower part of the calciner increases, but the heat absorption increase of limestone is higher than the heat release of combustion increase, so the whole temperature of calciner decreases. The concentration of NO in the calciner is determined by the oxidation and reduction processes catalyzed by limestone. The concentration of CO in the tail increases and the concentration of NO in the flue gas decreases with the decrease of the first stage air flow rate. When the ratio of limestone to coal increases, the temperature in the calciner decreases gradually. With the increase of the amount of limestone powder, the CaO concentration produced by thermal decomposition of limestone in the calciner increases, and the NO reduction reaction is more intense, and the NO concentration decreases gradually. The increase of limestone powder and the decrease of calciner temperature lead to the increase of CO concentration in the tail.

Key words:cement precalciner;air-staging combustion; combustion temperature; NO, emissions

0 引 言

水泥行业是我国建筑领域的支撑产业。随着我 国经济飞速发展,作为重要基础材料的水泥产品需 求量极大且趋于稳定。据国家统计局统计,2018 年 全国累计水泥产量达到 22 亿 t,全国累计熟料产量 达到 14 亿 t^[1]。目前,我国水泥生产技术主要采用 新型干法水泥生产线。截至 2018 年底,我国新型干 法水泥生产线达到 1 681 条。新型干法水泥技术又 称为预分解窑生产工艺^[2],是在生产线中悬浮预热 器与回转窑之间铺设一个窑外分解炉。在分解炉内 加入约 60%燃料,从悬浮预热器流出的生料与燃料 提前在分解炉内进行反应,燃料燃烧释放出的化 学热供给生料分解,提高了进入回转窑的生料的 表观分解率。从回转窑流出的高温烟气也与燃料 和生料在分解炉内进行反应。因此,高温烟气携 带的热量供给生料分解,实现回转窑的废气热焓 再利用。

水泥生产过程中的 NO_x排放与燃煤火电厂和汽 车尾气产生的 NO_x排放已成为空气污染的主要来 源^[3]。随着 GB 4915—2013《水泥工业大气污染物 排放标准》的日益严格,水泥生产过程中的低 NO_x排 放研究迫在眉睫。在新型干法水泥生产线中,回转 窑内工作温度达到 1 500 ℃以上,反应区间内会产 生大量热力型 NO_x和燃料型 NO_x^[4-5]。回转窑内通 常采用降低 NO_x排放手段包括优化回转窑烧成参数 软件、低一次风燃烧器和废气喷氨等^[6]。同时,分 解炉是降低水泥生产工艺中 NO_x排放的有效设 备^[7]。分解炉内工作温度通常在 800~1 000 ℃,反 应区间内的 NO_x以燃料型 NO_x为主。分解炉内可采 用分级燃烧和 SNCR 手段来抑制 NO_x生成^[8-9],其中 分解炉的分级燃烧技术是通过合理组织炉内燃烧,

在不影响石灰石分解的前提下实现低 NO, 排放。由 于分解炉内生料浓度较高,煤粉的燃烧放热过程和 生料的吸热分解过程相互耦合,使得分解炉内的温 度场和浓度场变得复杂,且回转窑产生的 NO, 会流 入分解炉内进行反应,使得 NO_x的反应过程更加复 杂。Liu 等^[10]研究表明,流化床煤粉燃烧过程中石 灰石的分解反应既可以减少煤焦燃烧产生的 N,O 排放,还可以提高焦炭氮向 NO/NO, 的转化率。 Allen 等^[11]研究表明,还原性气氛中 CaO 有利于减 少 NO 排放,但氧化性气氛中 CaO 会增加 NO 的排 放。Tarelho等^[12]研究表明,石灰石添加对 NO 和 N₂O 排放的影响取决于初始反应气氛。在初始贫燃 料气氛中,添加石灰石会增加 NO 排放而减少 N₂O 排放。然而在初始富燃料气氛中, NO 和 N, O 排放 变化呈相反趋势。上述研究表明石灰石添加对 NO, 的氧化还原反应影响与反应装置、温度和气氛等反 应条件紧密相关。因此,在模拟分解炉的反应条件 下探索石灰石添加对 NO, 排放变化影响具有重要 意义。

当前分解炉的分级燃烧技术研究以应用技术为 主,主要是冷态模型^[13]、数值模拟^[14-15]和一维炉试 验^[6],结果均表明分级燃烧可在保证石灰石分解率 的前提下实现低 NO_x排放。但分级配风模式(配风 位置和配风比例等)对 NO_x排放的影响规律随着试 验台结构和尺寸的改变而变化,同时考虑到分解炉 内部复杂的物理化学过程,需模拟实际应用分解炉 的相关试验。因此,本文在引入高温烟气的模拟分 解炉内进行空气分级燃烧试验,探索配风位置、配风 比例以及石灰石/煤比例对分解炉内燃烧和 NO_x排 放特性的影响规律。

1 试 验

1.1 试验样品

选用煤样为我国典型烟煤——神木烟煤,工业分析与元素分析见表 1。烟煤粒径为 0~0.18 mm。 石灰石样品的主要成分为 CaCO₃,纯度约为 98%,主 要杂质成分为 MgCO₃和 SiO₂,检测结果见表 2。石 灰石的粒径分布为 0~0.5 mm。

表 1 煤样的工业分析与元素分析 Table 1 Proximate and ultimate analyses of fuel

14 D	工业分析/%				元素分析/%					低位热值/
作于首直	$M_{\rm ad}$	$A_{ m ad}$	$V_{\rm ad}$	$FC_{\rm ad}$	C _{ad}	H_{ad}	\mathbf{N}_{ad}	\mathbf{S}_{ad}	O _{ad}	$(MJ \cdot kg^{-1})$
神木烟煤	8.12	7.68	31.89	52.31	72.31	4.93	0.85	0.30	5.81	24.43
	表	2 石灰	石分析			进风	口,将该如	L给风定	义为分解,	炉的一级风。在分
	Table 2	Analyses	s of limeste	one		解炉	距顶部	300, 1 2	200、1 500	0、1 800、2 100 和

成分	CaO	MgO	SiO ₂
质量分数/%	54	3	0.5

1.2 试验系统

试验系统由高温烟气发生装置、模拟分解炉和 辅助设备组成(图1)。高温烟气发生装置为一个循 环流化床,提升管的高度和直径分别为1000和 149 mm,旋风筒的直径为149 mm。少量煤粉在循 环流化床内完全燃烧,产生的高温烟气通过一个联 通管流入后置的模拟分解炉中。该股高温烟气将模 拟实际回转窑产生的烟气进入分解炉内。在高温烟 气的进口管中加入试验用煤和石灰石,此时可以认 为高温烟气携带着煤粉和石灰石进入模拟分解炉 内,反应路径从炉顶自上而下进行。分解炉的高度 和直径分别为6000和700 mm,炉膛为圆柱形结 构。在分解炉顶部的环形位置处等距离布置了4个 进风口,将该处给风定义为分解炉的一级风。在分 解炉距顶部 300、1 200、1 500、1 800、2 100 和 3 000 mm沿程布置有 6 个风路,沿程自上而下分别 定义为 1~6 层风路,每次试验仅选取其中 4 个风路 工作,每层风路的进风口对冲进入分解炉内,将该处 给风定义为分解炉二级风。为更接近实际分解炉内 的运行环境,控制模拟分解炉内的主要运行温度在 800~1 000 ℃,且在有高温烟气引入的气氛中加入 石灰石和煤的混合物,探索空气分级时的燃烧特性 和 NO_x排放特性。辅助设备包括送风机、引风机、尾 部水冷和除尘系统等,支撑着整个系统的正常运行。

高温烟气发生装置布置有 4 个热电偶(Ni-Cr/Ni-Si 热电偶),位置分别在提升管距顶部 50、500 和 950 mm 三处和返料器处。同时,在高温烟气发 生装置的出口处布置有一个热电偶(Ni-Cr/Ni-Si 热电偶),用以监测高温烟气的温度。模拟分解炉 沿程布置有 17 个热电偶(Pt/Pt-Rh 热电偶),位置 分别在距顶部 150~3 150 mm 的每 300 mm 处和 3 500~6 000 mm 的每 500 mm 处。

54

朱书骏等:分解炉空气分级燃烧及 NO, 排放特性研究

试验稳定过程中,分别在高温烟气装置出口的 联通管处和分解炉尾部的水冷出口管路处进行烟气 成分在线测试分析。烟气中 NO_x、NH₃、HCN、CO、 CO₂等组分采用 Gasmet FTIR DX-4000 烟气分析仪 测定,O₂采用氧化锆分析仪测定。

1.3 试验工况

试验主要研究分解炉内配风位置、配风比例 和石灰石/煤比例对燃烧特性和 NO_x排放特性的影 响。所有试验工况中,均保持高温烟气发生装置 内的燃烧状态不变,即循环流化床内的给煤量、配 风量等参数保持不变,从而产生的高温烟气的温 度和烟气组分含量才能保持不变。在此基础上, 按照不同试验目的变化试验参数,具体试验工况 参数见表 3。

	表 3 试验工况
Table 3	Experimental operating conditions

	高温烟气	发生装置	模拟分解炉					
工况	配风量/ (Nm ³ ・h ⁻¹)	给煤量/ (kg・h ⁻¹)	 一级风量/ (Nm³・h⁻¹) 	二级风量/ (Nm ³ ・h ⁻¹)	给煤量/ (kg・h ⁻¹)	石灰石量/ (kg・h ⁻¹)	风路层数	
1	27	1.87	63	53	13.6	26	1/2/3/6	
2	27	1.87	63	53	13.6	26	1/2/4/6	
3	27	1.87	63	53	13.6	26	1/2/5/6	
4	27	1.87	56	57	13.6	26	1/2/5/6	
5	27	1.87	51	64	13.6	26	1/2/5/6	
6	27	1.87	51	64	13.6	32	1/2/5/6	
7	27	1.87	51	64	13.6	38	1/2/5/6	
8	27	1.87	51	64	13.6	44	1/2/5/6	

2 试验结果与讨论

2.1 高温烟气发生装置

试验稳定过程中,高温烟气发生装置的给煤量 和配风量保持稳定不变,分别为 1.87 kg/h 和 27 Nm³/h。此时,高温烟气发生装置内的温度分布如 图 2 所示。可知高温烟气发生装置的时间平均温度 为 911 ℃。高温烟气发生装置出口的烟气温度如图 3 所示。可知高温烟气的温度稳定在 750 ℃左右。

利用 Gasmet FTIR DX-4000 烟气分析仪测定高 温烟气成分,其结果见表 4。结果表明高温烟气中 的 NO_x主要以 NO 和 N₂O 的形式存在,其浓度分别 为 261.49×10⁻⁶和 12.96×10⁻⁶。该股高温烟气将模 拟实际回转窑产生的烟气进入到分解炉内。

2.2 模拟分解炉

由高温烟气发生装置产生的高温烟气携带煤粉和

Fig.2 Temperature distribution in high temperature

flue gas generator

石灰石进入模拟分解炉内,反应过程自上而下进行。

表4 高温烟气成分

Table 4 High-temperature flu gas composition

NO/	N ₂ 0/	NO ₂ /	NH ₃ /	HCN/	C0/	CO2/
10^{-6}	10^{-6}	10^{-6}	10^{-6}	10^{-6}	10^{-6}	%
261.49	12.96	0.72	0.33	10.03	264.57	8.72

洁净煤技术

Fig.3 Temperature in high-temperature flue gas

2.2.1 不同配风位置

保持一级风量及二级风总风量不变,通过改变二 级风的位置来研究不同配风位置对分解炉内燃烧和 NO_x排放特性的影响,其中二级风一共分4层喷入分 解炉内,仅改变中间配风的位置,具体试验参数见表 3的工况1~3。不同工况下分解炉内温度变化如图4 所示。在分解炉的上部区域(距离顶部0~2000 mm 区域)的温度为800~1000 ℃,与实际分解炉运行温 度一致。随着中间配风位置的下移,分解炉顶部区域 的温度下降。原因为配风位置下移导致煤粉燃烧放 热区域下移,而顶部区域的石灰石吸热量变化较小, 则原有的热量平衡被打破,原有的吸热量高于现有的 放热量,导致顶部区域内的燃烧温度降低。

Fig.4 Temperature distribution at different gas injection locations

不同配风位置下烟气成分浓度变化如图 5 所示。排放烟气中 NO_x主要以 NO 和 N₂O 形式存在。随着配风位置的下移, NO 排放浓度升高, N₂O 浓度无明显变化。配风位置的下移使得分解炉顶部至该处位置区域空间增加,即煤粉燃烧和石灰石分解过程在还原气氛中反应时间变长。因此,在该处配风未喷入前, NO_x的还原反应更加充分,有利于降低NO_x浓度。同时,分解炉内石灰石的存在对于 NO 生成既有促进作用又有抑制作用^[16]。一方面,石灰石分解产生的氧化钙(CaO)作为中间产物促进了 NO 的生成反应^[17](式(1)~(3))。因此,随着配风位置下移导致的反应时间增加,也促进了 NO 的生成。

另一方面,石灰石作为催化剂参与焦炭和挥发分还 原 NO 的反应过程,该还原反应过程随温度下降而 变弱。由图 4 可知,随着中间配风位置的下移,分解 炉顶部区域温度下降,故该还原反应变弱。综上, NO 的最终排放浓度是以上不同反应间的综合结 果。随着配风位置的下移,该变化对 NO 的生成作 用更加明显。因此,NO 的排放浓度逐渐升高。

$$2C + O_2 \xrightarrow{CaO} 2C(O) \tag{1}$$

$$2C(0) + 2NO \xrightarrow{CaO} N_2 + CO_2$$
(2)

$$2C+2NO \xrightarrow{CaO} 2CO+N_2$$
 (3)

图5 不同配风位置下烟气成分浓度分布

2.2.2 不同配风比例

保持二级风配风位置不变,通过改变一级风量 和二级风量的相对比例来研究不同分级配风比例对 分解炉内燃烧和 NO, 排放特性的影响, 其中二级风 的配风位置固定在距离分解炉顶部 300、1 200、 2 100 和 3 000 mm 处, 具体试验参数见表 3 的工况 3~5。不同工况下分解炉内温度变化如图6所示。 当一级风量与二级风量的配风比例逐渐降低时,即 降低一级风量和增加二级风量,分解炉内沿程温度 整体呈现降低趋势。这是因为随着一级风量的减 少,分解炉上部区域的煤粉燃烧份额变少,燃烧放热 量相应降低,进而导致温度降低。此时,上部区域的 石灰石分解量也降低。在分解炉下部区域的煤粉燃 烧份额相应增加,但下部区域内未分解的石灰石份 额也增加,石灰石吸热量的增加量高于燃烧增加份 额的放热量,因此分解炉内整体温度均降低。分解 炉内反应温度的差距在中部区域最明显。随着燃烧

Fig.6 Temperature distribution of cement precalciner with different gas equivalent ratio

分解炉尾部烟气成分分析如图7所示。可知, 当一级风量与二级风量的比例减少时,烟气中的 NO浓度呈降低趋势, N₂O浓度变化很小。分解炉 内 NO 浓度是由石灰石催化的氧化过程和还原过程 综合决定的^[18]。一级风量变小时,石灰石催化 NO 的氧化时间和还原反应时间在还原性气氛中均变 长。已有研究表明还原性气氛下氧化钙和其他碱及 碱土金属(如氧化镁)会增强 NO 的还原率^[19]。相 较工况 3,工况 4 中石灰石催化 NO 的还原作用强于 氧化作用的效果,最终结果为 NO 浓度明显降低。 而相较工况4.在工况5中石灰石催化NO的还原作 用与催化 NO 的氧化作用的效果相近,因此 2 个工 况的 NO 排放无明显区别。随着一级风量的降低, 尾部 CO 浓度也随之增加。这是因为分解炉内燃烧 气氛由还原性气氛转变为氧化性气氛的区域向下移 动,结合分解炉内温度变化,说明燃烧效果变差。

图7 不同配风比例下烟气成分浓度分布

Fig.7 Composition concentration distribution of flue gas with different gas equivalent ratio

2.2.3 不同石灰石/煤比例

保持各级配风位置和给煤量不变,通过改变石 灰石给粉量研究不同石灰石/煤比例对分解炉内燃 烧和 NO_x排放特性的影响,具体试验参数见表 3 的 工况 5~8,分别对应石灰石/煤比例为 1.91、2.35、 2.79和 3.23。不同工况下分解炉内温度变化如图 8 所示。可知石灰石/煤比例增加时,即仅增加石灰石 给粉量时,分解炉内沿程温度逐渐下降。这是因为 更多的石灰石分解需要吸收更多的热量,而给煤量 保持不变,即燃烧反应放热量不变。该部分超出的 吸热量表现为分解炉内温度的降低。

Fig.8 Temperature distribution of precalciner with different ratio of limestone to coal

不同石灰石/煤比例下的分解炉尾部烟气成分分析如图 9 所示。随着石灰石量的增加,尾部 NO 浓度下降,而 N₂O 浓度升高。当石灰石给粉量增加时,分解炉中石灰石受热分解产生的 CaO 浓度随之增加,其中 CaO 是催化 NO 还原的重要化合物。因此 NO 浓度逐渐降低。而石灰石给粉量增加和分解炉温度降低的过程也导致尾部的 CO 浓度升高。

图 9 不同石灰石/煤比例下烟气成分浓度分布 Fig.9 Composition concentration distribution of flue gas composition with different ratio of limestone to coal

3 结 论

1)试验稳定过程中,高温烟气发生装置内温度 稳定波动,产生的高温烟气温度稳定在750℃左右。 高温烟气中 NO_x主要以 NO 和 N₂O 形式存在,浓度 分别为 261.49×10⁻⁶和 12.96×10⁻⁶。高温烟气作为 模拟实际回转窑产生的烟气进入分解炉内。

2)随着中间配风位置的下移,分解炉顶部区域 的温度下降。同时,NO 排放浓度逐渐升高,N₂O 浓 度没有明显变化。

3) 当一级风量与二级风量的配风比例逐渐降低时,分解炉内沿程温度整体呈现降低趋势。随着燃烧反应的进行,在分解炉下部区域的燃烧温度差距逐渐缩小。同时,烟气中的 NO 浓度呈现降低的趋势, N₂O 浓度的变化很小。随着一级风量的降低, 尾部 CO 的浓度也随之增加,燃烧效果变差。

4) 当石灰石/煤比例增加时,分解炉内沿程温 度逐渐下降。烟气中 NO 浓度逐渐下降,而 N₂O 浓 度逐渐升高。石灰石给粉量增加和分解炉温度降低 的过程也导致尾部的 CO 浓度升高。

参考文献(References):

[1] 陈柏林. 2018年中国水泥行业经济运行报告[J].中国水泥, 2019(2):7-11.

CHEN Bolin. China's cement industry economic operation report in 2018[J]. China Cement, 2019(2):7-11.

[2] 胡芝娟,刘志江,王世杰.模拟分解炉中煤焦燃烧生成 NO 的特性[J]. 化工学报,2005,56(3):545-550.
HU Zhijuan, LIU Zhijiang, WANG Zhijie. NO formation from coal char combustion in cement precalciner[J]. Journal of Chemical Industry and Engineering (China), 2005, 56(3): 545-550.

- [3] 杨建蒙,戎旭,李森,等. 水泥分解炉高 CaO/CO₂环境 CO 还原 NO 机制[J]. 化学工程,2019,47(1):1-5.
 YANG Jianmeng, YONG Xu, LI Sen, et al. Mechanism of NO reduction by CO in high CaO/CO₂ environment of cement precalciner [J]. Chemical Engineering(China),2019,47(1):1-5.
- [4] 王世杰,陆继东,李卫杰,等.水泥回转窑内 NO 生成的模拟
 [J].化工学报,2006,57(11):2631-2637.
 WANG Shijie,LU Jidong,LI Weijie, et al. Numerical simulation of NO formation in cement rotary kiln[J]. Journal of Chemical Industry and Engineering(China),2006,57(11):2631-2637.
- [5] GLARBORG P, JENSEN A D, JOHNSSON J E. Fuel nitrogen conversion in solid fuel fired systems [J]. Progress in Energy and Combustion Science, 2003, 29(2):89-113.
- [6] 胡芝娟. 分解炉氮氧化物转化机理及控制技术研究 [D]武汉: 华中科技大学,2004:10-11.

HU Zhijuan. The study on mechanism of nitrogen oxides transformation and control technology for precalciner[D].Wuhan: Huazhong University of Science and Technology, 2004:10-11.

- [7] 徐顺生,赵鹏飞,刘小宇,等. 燃用无烟煤分解炉分风降氮数值 模拟研究[J]. 硅酸盐通报,2018,37(12):4027-4033.
 XU Shunsheng,ZHAO Pengfei,LIU Xiaoyu, et al. Numericalsimulation study of decreasing NO_x combustion of anthracite on the condition of the air staging in precalciner[J]. Bulletin of the Chinese Ceramic Sociaty,2018,37(12):4027-4033.
- [8] 黄来.水泥分解炉内物理化学过程模拟和优化设计研究[D] 武汉:华中科技大学,2006.

HUANG Lai. The study of physicochemical process simulation and optimum design for cement precalciner [D]. Wuhan: Huazhong U-niversity of Science and Technology, 2006.

- [9] LI S, GE Y, WEI X. Experiment on NO_x reduction by advanced reburning in cement precalciner [J]. Fuel, 2018, 224:235-240.
- [10] LIU H, GIBBS B. The influence of calcined limestone on NO_x and N₂O emissions from char combustion in fluidized bed combustors [J]. Fuel, 2001, 80:1211–1215.
- [11] ALLEN D, HAYHURST A. The effect of CaO on emissions of nitric oxide from a fluidised bed combustor [J]. Fuel, 2015, 158:898-907.
- [12] TARELLO L, MATOS M, PEREIRA F. Influence of limestone addition on the behaviour of NO and N₂O during fluidised bed coal combustion [J]. Fuel, 2006, 85:967–977.
- [13] FELLAOU S, HARNOUNE A, SEGHRA M A, et al. Statistical modeling and optimization of the combustion efficiency in cement kiln precalciner[J]. Energy, 2018, 155:351-359.
- [14] 杨煜,任晨洋,刘运,等.管道式分解炉中褐煤燃烧耦合 CaCO₃分解的数值模拟[J]. 硅酸盐通报. 2019,38(1):27-32.
 YANG Yu, REN Chenyang, LIU Yun, et al. Numerical simulation of coupling CaCO₃ decomposition of lignite combustion in the precalciner[J]. Bulletin of the Chinese Ceramic Sociaty, 2019, 38 (1):27-32.
- [15] 张乐宇,张忠孝,魏小林,等.水泥分解炉冷态流动特性的数值 模拟研究[J]. 能源工程,2019(2):48-55.
 ZHANG Leyu,ZHANG Zhongxiao,WEI Xiaolin, et al. Numerical simulation of cold flow characteristics in precalciners of cement industry[J]. Energy Engineering,2019(2):48-55.
- [16] 吕刚. 水泥分解炉内 NO 生成和还原机理的实验及模拟研究
 [D].武汉:华中科技大学,2011.
 LYU Gang.Experimental and modeling study of NO formation and reduction for precalciner[D].Wuhan:Huazhong University of Science and Technology,2011.
- [17] JENSEN A, JOHNSSON J E, DAM JOHANSEN K. Catalytic and gas – solid reactions involving HCN over limestone [J]. AIChE Journal, 1997, 43(11): 3070–3084.
- [18] 张灵辉.水泥分解炉燃料型 NO_x形成影响因素及源头防治研究[D].广州:华南理工大学,2016. ZHANG Linghui.Research on the influencing factors of fuel-NO_x and control from pollution source in calciner of cement[D].Guangzhou:South China University of Technology,2016.
- [19] YAMASHITA H, YAMADA H, TOMITA A. Reaction of nitric oxide with metal-loaded carbon in the presence of oxygen[J]. Applied Catalysis, 1991, 78(2):L1-L6.