2019年 3月

小麦秸秆燃烧过程中碱金属释放特性

李慧君1,谢兴运1.3,赵 京2.3,张玉锋2.3,魏小林2.3

(1. 华北电力大学 能源动力与机械工程学院,河北 保定 071003;2. 中国科学院 力学研究所 高温气体动力学
 国家重点实验室,北京 100190;3. 中国科学院大学 工程科学学院,北京 100049)

要:生物质作为可再生洁净能源.在中国能源结构中将占据越来越重要的地位。生物质中碱金属 摘 元素(主要是K)含量丰富,是生物质灰的主要成分。由于碱金属无机盐(如KCl)具有较低的熔点,因 此生物质内碱金属极易在燃烧中释放,此特性给生物质能源的开发及利用带来了严重的技术安全问 题。在生物质燃烧过程中,部分碱金属灰分气态释放后,易于凝结、吸附并沉积在锅炉炉膛受热表面, 造成玷污、结垢及积灰等问题,严重影响锅炉的换热,甚至造成腐蚀。因此,研究生物质燃烧过程中碱 金属元素的释放规律及机理,将为我国生物质的清洁高效利用提供有力的理论支持,具有较好的社会 经济及学术意义。以小麦秸秆为试验对象,研究生物质燃烧过程中碱金属的释放特性,通过水平管式 炉及 XRD、SEM-EDS 等检测手段,研究了燃烧温度 400~900 ℃碱金属的释放特性。结果表明,碱金 属 K 主要以水溶性形式存在,碱土金属 Ca、Mg 主要以醋酸铵溶及水溶性形式存在。水溶性 K 主要以 KCl、KNO3、K2SO4 和 K3PO4 的水合离子或晶体存在。燃烧过程中,400 ℃内主要释放有机 K 及少量 无机 K,400~600 ℃ 时, K 释放主要以 KNO, 的无机 K 为主,600 ℃以上时主要以 KCl 和 KNO, 释放。 碱土金属 Ca 和 Mg 会形成较稳定的化合物,不易释放。通过对灰渣表面元素富集状况分析可知,K 与 Cl 含量同步变化:600 ℃内,K 与 Cl 含量同步增长,主要因为有较多碱金属化合物以 KCl 的形式析 出;高于600℃时,灰渣表面 K 与 Cl 含量减少,主要因为 KCl 与 SiO, 等发生反应或直接以 KCl 的形 式释放。

关键词:小麦秸秆;碱金属;赋存形态;释放特性

中图分类号:TK6 文献标志码:A 文章编号:1006-6772(2019)02-0062-07

Release characteristics of alkali metals during wheat straw burning

LI Huijun¹, XIE Xingyun^{1,3}, ZHAO Jing^{2,3}, ZHANG Yufeng^{2,3}, WEI Xiaolin^{2,3}

(1. School of Energy Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, China;

2. State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China;

3. College of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract: As a renewable and clean energy, biomass will play an increasingly important role in Chinese energy structure. The content of alkali metal elements (mainly K) in biomass is usually relatively rich, and it is the main component of biomass ash. Alkali metals in biomass are easily released in combustion due to the low melting point of alkali metal inorganic salts (for example, KCl), which brings serious technical safety problems to the development and utilization of biomass energy. In the biomass combustion process, partial alkali metal ash is easy to condense, adsorb and deposit on the heated surface of the boiler chamber after the gaseous release, which causes problems such as pollution, scale formation and ash accumulation and seriously affects the heat transfer of the boiler and even causes corrosion. Therefore, the release law and mechanism of alkali metal elements in the process of biomass combustion research will provide strong theoretical support for the clean and efficient utilization of biomass in China, which has good socio-economic and academic significance. In this paper, the release characteristics of alkali metals in the biomass combustion process of wheat straw were studied. The release characteristics of alkali

基金项目:国家自然科学基金资助项目(51736010)

引用格式:李慧君,谢兴运,赵京,等.小麦秸秆燃烧过程中碱金属释放特性[J].洁净煤技术,2019,25(2):62-68.

LI Huijun, XIE Xingyun, ZHAO Jing, et al. Release characteristics of alkali metals during wheat straw burning[J]. Clean Coal Technology, 2019, 25(2):62-68.

收稿日期:2018-12-29;责任编辑:张晓宁 DOI:10.13226/j.issn.1006-6772.18122912

作者简介:李慧君(1964—),男,吉林四平人,教授,主要研究方向为强化换热及数值计算、燃料燃烧、余热利用。E-mail:hj_ li009@ sina.com。通讯作者:魏小林(1967—),男,陕西西安人,研究员,博士生导师,研究方向为煤与生物质燃烧、 高效清洁利用。E-mail:xlwei@ imech.ac.cn

metals at the combustion temperature of 400–900 $^{\circ}$ C were researched through the horizontal tube furnace and XRD, SEM-EDS and other test means. The results show that alkali metal K mainly exists in the form of water soluble, while alkali earth metals Ca and Mg mainly exists in the form of ammonium acetate soluble and water soluble. Water-soluble K mainly exists in hydrated ions or crystals of KCl, KNO₃, K₂SO₄ and K₃PO₄. In the combustion process, the main organic K and a small amount of inorganic K release within 400 $^{\circ}$ C, inorganic potassium in the form of KNO₃ is mainly released within 400–600 $^{\circ}$ C, KCl and KNO₃ are mainly released above 600 $^{\circ}$ C. Alkaline earth metals Ca and Mg form relatively stable compounds which are not easy to release. K and Cl contents change synchronously according to the analysis of element enrichment on the ash surface,. K and Cl contents grow simultaneously below 600 $^{\circ}$ C mainly because there are more alkali metal compounds in the form of KCl. K and Cl contents on the surface of ash surface reduce over 600 $^{\circ}$ C mainly because KCl reacts with SiO₂, or directly release in the form of KCl.

Key words: wheat straw; alkali metal; occurrence form; release characteristics

0 引 言

生物质是一种日渐重视的可再生能源,具有 CO₂ 近零排放的特性^[1]。我国拥有种类繁多的生物 质资源,仅农作物每年产量达8亿t,约占生物质资 源总量的50%^[2]。目前我国农作物利用率仅有 30%,处理后再被利用的生物质资源也仅占2.6%, 因此我国生物质具有很大的开发潜力^[3]。但生物 质中碱金属含量较高,易出现沾污、积灰、形成烟气 走廊及管磨损泄露等问题,严重影响锅炉的正常运 行,限制了生物质在发电行业的大量应用^[4-7]。

目前,学者们对生物质及煤中碱金属的燃烧释 放特性进行了大量研究。Liao 等^[8]研究了稻杆燃烧 过程 K 的迁移行为,在燃烧初期,部分 K 随挥发分 一同释放,在 500 ℃以上时,无机 K 释放到气相中。 刘敬等^[9]发现,准东煤中 Na 在 400~600 ℃时释放 析出最快,且析出主要发生在燃烧后期。煤燃烧过 程中 Na 析出后易与烟气中的 SO₂ 或 SO₃ 反应生成 低熔点的 Na_2SO_4 ,不仅黏附撞击受热面的颗粒,且腐蚀受热面^[10]。

现有关于生物质碱金属赋存的研究基本均认为 水溶性 K 为碱金属 K 的主要存在形式。但是对于 生物质水溶性 K 具体成分构成仍不清晰,且对燃烧 过程碱金属 K 的释放特性还没有广泛认同的结论。 本文以鲁西北的小麦秸秆为研究对象,采用化学分 馏试验及 SEM-EDS 研究碱金属 K 的赋存形态及分 布特性;在燃烧温度 400~900 ℃研究温度对碱金属 K 释放特性的影响。

1 试 验

1.1 试验样品

以粒径小于 0.56 mm 的小麦秸秆粉末为试验 样品,其碱(土)金属含量(以灰分计)为:K, 1.938 6 mg/g; Ca, 0.546 6 mg/g; Na,0.059 4 mg/g;Mg,0.138 3 mg/g。试验样品的空气干燥基 的工业分析和元素分析见表 1。

表 1 小麦秸秆工业分析及元素分析 Table 1 Proximate and ultimate analysis of wheat straw

工业分析/%				$Q_{ m net,ad}$	元素分析/%					
$M_{\rm ad}$	$V_{\rm ad}$	$FC_{\rm ad}$	$A_{\rm ad}$	$(MJ \cdot kg^{-1})$	C_{ad}	H_{ad}	O_{ad}	\mathbf{N}_{ad}	\mathbf{S}_{ad}	$\mathrm{Cl}_{\mathrm{ad}}$
2.74	59.32	28.66	9. 28	15.73	41.82	5. 209	43.45	0. 80	0.12	1.053

1.2 试验装置

水平管式炉试验系统如图 1 所示,系统由氮气 罐、空气罐、水平管式炉、温控仪及烟气分析仪等组 成,反应室由直径为 70 mm 的石英管制成,由电阻 丝均匀加热。

1.3 化学分馏试验

采用化学分馏试验测定生物质或煤碱金属的赋存形态。取2g小麦秸秆样品放入去离子水中,温度设定为60℃,在磁力搅拌器中搅拌24h后用滤纸过滤并定容到80mL,将水洗过滤的残留物干燥

Fig. 1 Experimental system of horizontal tube furnace

到质量恒定并记录数据;将水洗残留物放入1 mol/L 的醋酸铵溶液中,重复上述步骤;将醋酸铵洗过滤后 的残留物放入1 mol/L 的稀盐酸溶液,重复上述的 步骤;最后的残渣用氢氟酸溶解。运用 ICP-AES (电感耦合原子发射光谱仪)及 IC 离子分析仪对滤 液进行定量分析,为防止误差,试验重复3次,取平 均值。

1.4 燃烧试验

为研究小麦秸秆燃烧过程中温度对碱金属释放 迁移的影响,选取燃烧温度为400~900℃。将空气 通入管式炉10 min,空气流速为1 L/min,将管式炉 加热到设定温度,迅速将装有3g样品的方舟放入 管式炉中,恒温下保持10 min,保证样品在管式炉内 充分燃烧。采用 DX4000 烟气分析仪测量烟气 (CO₂、HCl等)含量,10 min 后将样品拉至出口处以 N₂为保护气冷却至室温,取出称量收集。

1.5 XRD 及 SEM-EDS 检测

对小麦秸秆热解过程得到的灰渣进行 XRD 检测,扫描方式为 2θ/θ 耦合连续扫描,扫描角度为 5°~80°。XRD 谱图经 Jade 6.0 软件处理分析,从 而获得样品的成分、内部原子或分子的结构或形态 等。通过对灰渣进行 SEM-EDS 检测,得到灰渣表 面化学分布和颗粒结构。

2 结果与分析

2.1 小麦秸秆中碱(土)金属赋存形态

生物质中碱(土)金属可分为水溶性(WS)、醋酸铵溶性(NACS)、酸溶性(HS)及不溶(NS)。小麦秸秆中碱(土)金属赋存形态分布如图2所示。小麦秸秆中水溶性 K 和醋酸铵溶性 K 的脱除率分别

为75.98%、16.08%;水溶性 Na、醋酸铵溶性 Na、酸溶性 Na 的 脱除率分别为42.19%、40.63%、12.5%,说明小麦秸秆碱金属 K 主要以水溶性存在,以醋酸铵溶性存在的 K 占比次之,酸溶和不溶性占比较少;Na 主要以水溶性和醋酸铵溶性存在。小麦秸秆水溶性 Ca、醋酸铵溶性 Ca 的脱除率分别为27.95%、54.42%;水溶性 Mg、醋酸铵溶性 Mg 的脱除率分别为38.84%、40.28%,Ca、Mg 酸溶与不溶性含量较少,说明小麦秸秆中 Ca、Mg 主要以醋酸铵溶性与水溶性的形式存在。

图 2 小麦秸秆中碱(土)金属赋存形态分析 Fig. 2 Analysis of the occurrence form of alkali (earth) metal in wheat straw

小麦秸秆滤液阴阳离子浓度见表 2。阳离子主要以 K⁺、Ca²⁺为主, 阴离子主要以 Cl⁻、NO₃ 为主。 根据溶液电荷守恒计算, 小麦秸秆水洗滤液阳离子 总电荷数为 13.974 5 mmol/L, 阴离子总电荷数为 14.093 9 mmol/L。溶液中阴阳离子电荷基本守恒, 阴离子价位略高于阳离子, 这是由于仪器精度限制 以及测量误差引起的。可认为样品中水溶性 K 主 要以 KCl、KNO₃、K₂SO₄、K₃PO₄等水合离子或晶体 存在,样品中含有较多的硝酸根, 主要是由于植物生 长时施加钾肥氮肥造成的。

表 2 小麦秸秆滤液阴阳离子浓度

Table 2 W	heat straw	washed w	vith water	Concentration of	of cation a	and anion i	n filtrate of	wheat straw
-----------	------------	----------	------------	------------------	-------------	-------------	---------------	-------------

	阳离子含量	$/(\text{mmol} \cdot L^{-1})$		- 阴离子含量/(mmol・L ⁻¹)				
K ⁺	Na^+	Ca ²⁺	Mg ²⁺	SO_4^{2-}	Cl	PO_4^{3-}	NO_3^-	
10. 160 8	0. 298 5	1.1599	0.5974	0.712 5	8.205 6	0.2147	3.8197	

为进一步探究样品中碱金属赋存形态,对小麦 秸秆样品进行 SEM-EDS(mapping)检测,如图 3 所 示。

由图3可看出,小麦秸秆中元素主要以C和O 元素为主,并存在Si、K、Ca、Cl、Mg等微量元素。根据SEM结果发现,在小麦秸秆表面同一位置,K、Cl 等元素分布均匀,表明样品中存在KCl等无机盐形态,且KCl易溶于水。这说明小麦秸秆中大部分K 元素是以水溶性形态存在并均匀分布在秸秆中,这 与化学分馏试验结果一致。同时 K 与 S、Si 在同一 位置均匀分布,说明 K 可能与 S、Si 形成碱金属硫酸 盐等水合离子/晶体及硅酸盐形态;Ca、Mg 与 S 有部 分区域相似,表明存在 CaSO₄、MgSO₄等硫酸盐。

2.2 小麦秸秆燃烧过程中碱(土)金属的释放特性 2.2.1 不同温度燃烧特性

400~900 ℃下灰渣的变化状况如图 4 所示。

李慧君等:小麦秸秆燃烧过程中碱金属释放特性

图 3 小麦秸秆原样 SEM+EDS 检测

可以看出,在不同的燃烧温度下得到的灰渣不同。 400~500℃时,低温燃烧灰渣呈蓬松状且体积较 大;随着温度升高,600℃以上时,灰渣与方舟发生 黏连烧结。温度越高,与方舟黏连烧结越严重,灰渣 体积越小。

方舟黏连烧结主要是由于样品中的 KCl 与 SiO₂ 发生反应造成的,其反应式^[11]为

 $2\mathrm{KCl} + n\mathrm{SiO}_2 + \mathrm{H}_2\mathrm{O} = \mathrm{K}_2\mathrm{O}(\mathrm{SiO}_2)_n + 2\mathrm{HCl}$

(1)

 A00 °C
 500 °C
 600 °C

 500 °C
 600 °C
 600 °C

 Image: Solution of the second of the se

2.2.2 烟气中 HCl 体积分数变化

烟气中 HCl体积分数随温度的变化如图 5 所示。小麦秸秆恒温燃烧过程中,400 ℃时排放的HCl最大浓度为 2 101.17×10⁻⁶;400~600 ℃时

HCl 排放浓度变化最大;600 ℃时排放的 HCl 最大 浓度为 62.91×10⁻⁶, HCl 排放规律为先增大再减 小。其主要原因^[12]为,400 ℃时,生物质中碱金属 K 元素易与有机结构分解产生的有机氯及气相中 的水蒸气反应生成大量的 HCl,故此时的排放浓度 比高温段的大得多。随温度的升高,碱金属以碱 金属氯化物的形式析出,Cl 参与反应生成的 HCl 减少,高温下碱金属 K 大部分以 KCl 的形式直接 蒸发进入气态中。

Fig. 5 Volume fraction of HCl in flue gas

2.2.3 不同燃烧温度下碱(土)金属释放特性

小麦秸秆热解碱(土)金属残留及释放情况如 图 6 所示。由 400~900 ℃进行燃烧成灰试验可以 看出,碱金属 K 的释放量与燃烧温度具有较大的相 关性,其各物质的熔点为:KCl,770 ℃、KNO₃,334 ℃、K₂SO₄,1 069 ℃、K₃PO₄,1 380 ℃。400 ℃时,K 的释放量达 18.88%,大于 18.86% (NACS+HS),说 明 400 ℃时除了有机 K 释放外,还有少量无机 K 释 放;600 ℃时,K 的释放量为 46.44%,超过 KNO₃ 的 熔点,说明除了有机 K 外,还有大量 KNO₃ 析出;800 ℃时,K 的释放量为 53.89%,达到 KCl 熔点,碱金 属 K 继续析出,固留率减小。由图 6 可知,Na 比 K 更易随温度的升高进入气相,600 ℃时 Na 释放量为 63.89%。碱土金属 Mg、Ca 大多数残留在灰渣中, 碱土金属释放量较少,说明 Ca 和 Mg 会形成较稳定 的、不易挥发的化合物。

2.2.4 燃烧时间及燃烧厚度对碱金属释放的影响

燃烧时间对灰渣中 K 固留率的影响如图 7 所示。随着燃烧时间的延长,碱金属 K 的释放率增大。5 min 时,碱金属 K 在灰渣的固留率为

图6 小麦秸秆燃烧过程碱(土)金属释放变化

Fig. 6 Release changes of alkali (earth) metal during wheat straw burning

63.79%;10 min 时,碱金属 K 在灰渣的固留率为 46.12%,碱金属 K 释放率在 5~10 min 有较大变 化。这主要因为在 5 min 内碱金属 K 的释放析出是 由于干燥和燃烧过程中有机结构的裂解和转化。在 10 min 内,除了有机物裂解转化,还有固定碳的燃 烧,使 K 以无机盐的形式释放。而燃烧时间大于 10 min,碱金属 K 固留率变化较小,说明在 10 min 内样品基本燃烧完全。

小麦秸秆不同燃烧层厚度灰渣中 K 的固留率 如图 8 所示。选择相同器皿,故不同质量的样品代 表不同厚度。随着燃烧厚度的增大,灰渣碱金属 K 的固留率增加。说明燃烧层厚度的增大阻碍了碱金 属 K 释放到气相中。

2.3 小麦秸秆燃烧样品表面化学和颗粒结构

小麦秸秆在 400、800 ℃燃烧的灰渣 SEM-EDS 图谱如图 9 所示,左侧 SEM 电镜扫描图分别为扫描 尺寸为 5 µm 和 50 µm,右图为对灰渣表面元素的能 谱分析 EDS 检测。从 SEM 电镜扫描图可看出,400 ℃时燃烧得到的灰渣呈蓬松状,表面微观微粒结构 保持了一些样品的纤维结构,样品组织并未完全破 坏。随着温度升高,燃烧温度 800 ℃时,灰渣颗粒物 理结构完全破坏,纤维结构全部消失。灰渣凝结在 一起,表面孔洞呈凹凸状,并附着熔融态混合物,其

图8 小麦秸秆不同燃烧层厚度灰渣 K 的固留率

Fig. 8 Retention rate of ash K of wheat straw in different burning layer thickness

结构和石灰石相似,部分部位棱角分明、光滑,与矿 石相近。

图 9 小麦秸秆 400、800 ℃燃烧灰渣的 SEM-EDS 图谱 Fig. 9 SEM-EDS map of wheat straw burning ash at 400 and 800 ℃

为保证数据准确,采用 mapping(面扫)。灰渣 表面元素中,O是主要元素。400~800℃下,P、Al、 Ca、Mg等元素表面含量变化较小,相对稳定,说明 在燃烧中这些元素与氧发生了氧化反应并产生稳定 化合物滞留在灰渣中。碱金属 Na 的表面含量极其 微量,这主要由于 Na 元素不是植物的必需营养物 质。随着燃烧温度升高,灰渣中 Si 表面含量逐步增 加,800℃时其表面含量达 26.1%,而 O 和 Si 质量 分数占比大,说明此时样品的主要成分为 SiO₂ 和硅 酸盐。SEM 电镜扫描灰渣出现棱角分明的块状,类 似于矿石的物质,其中 SiO₂ 是典型的石英成分。 但 Si 含量比 O 占比小,说明小麦秸秆在燃烧中还有 其他氧化物产生(K₂O、CaO 等)。在 EDS 图谱中, 不同温度 K 与 Cl 在灰渣颗粒表面含量均大于样品 中 K 与 Cl 的比值,主要因为 Cl 元素在燃烧过程具 有较强的挥发性,具体挥发形式^[13-14]为:燃烧中的 KCl 与羰基等含氧官能团反应,其中碱金属 K 可与 有机官能团绑定,Cl 以 HCl 的形式释放出来。

小麦秸秆不同燃烧温度下灰渣表面 K、Cl 含量 的变化如图 10 所示。400 ℃前,灰渣颗粒表面 K 元 素含量呈增长趋势,说明碱金属 K 从颗粒内部往外 析出,表面富集速率大于释放速率。400 ~600 ℃, 灰渣颗粒表面 K 元素含量几乎不变,说明随着温度 升高,释放速率加快。温度高于 600 ℃,灰渣颗粒表 面 K 元素含量减少,说明在高温下,碱金属 K 从颗 粒内部往外析出,表面释放速率大于富集速率。另 外,K 和 Cl 的摩尔比大于 1,说明小麦秸秆在不同燃 烧温度下得到的灰渣中,不仅有无机盐 KCl,K 还可 能以硫酸盐、硅酸盐等形式存在。

由图 10 可知,K 与 Cl 表面含量变化是同步的。 600 ℃前,K 与 Cl 含量同步增长,主要因为有较多 的碱金属化合物以 KCl 存在;高于 600 ℃时,灰渣表 面 K 与 Cl 表面含量减少,可能因为 KCl 与 SiO₂ 等 发生反应或直接以 KCl 的形式释放出去,这在图 11 得到验证。在 XRD 图谱中有 K₃Na(SO₄)₂ 产物,其 可能的产生途径^[15]为

 $K_{2}SO_{4} + nSiO_{2} = K_{2}O \cdot nSiO_{2} + SO_{3} \quad (2)$ NaCl + 3KCl + 2SO₃ + 2H₂O = K₃Na(SO₄)₂ + 4HCl \qquad (3)

3 结 论

1)小麦秸秆碱金属主要以 K 为主,且主要以水 溶性形式存在;Na 主要以水溶性和醋酸铵溶性的形 式存在;碱土金属 Ca、Mg 主要以醋酸铵溶性及水溶 性的形式存在。水溶性 K 主要以 KCl、KNO₃、 K₂SO₄、K₃PO₄的水合离子或晶体存在。

2)400 ℃内主要释放有机 K 及少量无机 K,

400~600 ℃主要以 KNO₃ 的无机 K 为主释放,600 ℃以上主要以 KCl 与 KNO₃ 释放。碱土金属 Ca 和 Mg 会形成较稳定、不易挥发的化合物。

3) 对碱金属在灰渣表面富集状况分析得,K与 Cl含量变化同步。600 ℃前,K与 Cl含量同步增 长,主要因为有较多的碱金属化合物以 KCl存在;高 于 600 ℃时,灰渣表面 K与 Cl表面含量减少,可能 因为 KCl与 SiO₂等发生反应或直接以 KCl 的形式 释放。

参考文献(References):

- [1] 王许涛,张百良. 生物质秸秆成型燃料特性分析[J]. 洁净煤技术,2012,18(2):39-42.
 WANG Xutao,ZHANG Bailiang. Analysis of characteristics of biomass straw forming fuel[J]. Clean Coal Technology,2012,18(2): 39-42.
- [2] 田飞,苟正贵,陈颖. 黔中、黔北地区玉米秸秆再利用调查与分析[J].贵州农业科学,2007,35(3):58-60.
 TIAN Fei, PEI Zhenggui, CHEN Ying. Investigation and analysis of corn straw recycling in Central and Northern Fujian[J]. Journal of Guizhou Agricultural Sciences,2007,35(3):58-60.
- [3] 李忠. 生物质秸秆综合利用现状与对策分析[J]. 中国资源综合利用,2017,35(12):72-74.
 LI Zhong. Analysis on the status quo and countermeasures of comprehensive utilization of biomass straw[J]. China Resources Comprehensive Utilization,2017,35(12):72-74.
- [4] LI G, WANG C, YAN Y. Release and transformation of sodium during combustion of zhundongcoals[J]. Journal of the Energy Institute, 2015, 29(1):48-56.
- [5] 孙永明,袁振宏,孙振钧. 中国生物质能源与生物质利用现状 与展望[J]. 可再生能源,2006,126:78-82.
 SUN Yongming, YUAN Zhenhong, SUN Zhenwei. Current status and prospects of biomass energy and biomass utilization in China [J]. Renewable Energy,2006,126:78-82.
- [6] JENKINS B M, BAXTER L L, MILE T R. Combustion properties of biomass[J]. Fuel Process Technology, 1998, 54:17-46.

- [7] BAXTER L. Ash deposition during biomass and coal combustion: A mechanistic approach[J]. Biomass and Bioenergy, 1993, 4:85-102.
- [8] LIAO Y F, YANG G. Experimental study on the combustion characteristics and alkali transformation behavior of straw [J]. Energy Fuels, 2012, 26(2):910-916.
- [9] 刘敬,王智化,项飞鹏.准东煤中碱金属的赋存形式及其在燃烧过程中的迁移规律实验研究[J].燃料化学学报,2014,42
 (3):316-322.

LIU Jing, WANG Zhihua, XIANG Feipeng. Experimental study on the occurrence forms of alkali metals in Zhundong coal and their migration in combustion process[J]. Journal of Fuel Chemistry, 2014, 42(3);316-322.

- [10] 兰泽全.煤和黑液水煤浆沾污结渣机理及灰沉积动态特性研究[D].杭州:浙江大学,2004.
- [11] BJORKMAN E, STROMBERG B. Release of chlorine from bio-

mass at pyrolysis and gasification conditions [J]. Energy Fuels, 1997,11:1026-1032.

- [12] 孟凡华,杨天华,孙祥. 生物质燃烧过程中碱金属迁移转化研究进展[J]. 可再生能源,2010,28(5):111-114.
 MENG Fanhua, YANG Tianhua, SUN Xiang. Research progress of alkali metal migration and transformation in biomass combustion process[J]. Renewable Energy,2010,28(5):111-114.
- [13] JOHAN Werkelin, BENGT-JOHAN Skrifvars. Chemical forms of ash-forming elements in woody biomass fuels [J]. Fuel, 2010, 89:481-493.
- [14] 杨光. 生物质燃烧过程中碱金属迁移研究[D]. 广州:华南理 工大学,2012.
- BERRUECO C, ESPERANZA E. Pyrolysis of waste tyres in an atmospheric static-bed batch reactor; Analysis of the gases obtained
 J. Journal of Analytical and Applied Pyrolysis. 2005, 74 (1/2);245-253.