四角切圆无烟煤燃烧系统灵活性改造优化研究

熊英莹1,2 谭厚章2

(1.山西大学 动力工程系,山西 太原 030006;2. 西安交通大学 热流科学与工程教育部重点实验室,陕西 西安 710049)

要:为解决无烟煤锅炉燃烧中存在的着火性能差、燃尽率低、锅炉设备燃烧不稳、效率下降、受 摘 热面结渣严重等问题,对某220 t/h 燃烧无烟煤锅炉进行燃烧系统灵活性改造优化研究。通过热 态试验,研究煤粉细度、锅炉负荷、磨煤机启停、三次风、二次风、瓦斯等因素对煤粉着火的影响;通 过冷态试验,计算冷态下一、二、三次风风速,试验包括飘带试验、炉膛速度场的测量、贴壁速度场 的测量。220 t/h 无烟煤锅炉灵活性改造方案为:假想切圆直径为700 mm,对应的实际切圆直径为 4 000 mm;下一次风喷口的 V 型由垂直方向改为水平方向;将原上一次风百叶窗水平浓淡燃烧器 喷口 V 型稳燃体去除,改为直板型;卫燃带面积由 80.64 m² 调整为 63.36 m²;加装 4 台瓦斯流量 表。通过优化研究,提出了修正后的冷态实际切圆大小的计算公式,确定修正系数 K_w=1.132,并 做出实际切圆与一次风速、二次风速的关系曲线。改造后试验机组最大限度地减轻锅炉受热面结 焦,掺烧劣质煤的运行特性明显改善,飞灰含碳量平均控制在3.29%,优化方案可在无烟煤燃烧锅 炉灵活性改造中推广。

关键词:四角切圆;无烟煤锅炉;灵活性改造;热态试验;冷态试验

文章编号:1006-6772(2018)01-0108-07 文献标志码:A 中图分类号:X701

Optimize flexibility of four-angle cut round anthracite boiler combustion system XIONG Yingying^{1,2}, TAN Houzhang²

(1. Department of Power Engineering, Shanxi University, Taiyuan 030006, China; 2. Laboratory of Thermo-Fluid

Science and Engineering, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China)

Abstract: In order to solve problems in the anthracite boiler combustion, such as poor ignition performance, low burnout rate, unstable combustion of boiler, efficiency decline, large area of heating surface and so on. Optimize flexibility of combustion system in a 220 t/h anthracite boiler was researched. Influence of coal powder fineness, boiler load, coal mill start and stop, tertiary air, secondary air, gas and other factors on coal fire was studied in thermal test. Tertiary air, secondary air and primary air were obtained, and tie-floating test, hearth and wall velocity were studied in cold test. Scheme of optimize flexibility in a 220 t/h anthracite boiler is confirmed. Imaginary cut circle size and actual cut circle size are 700 mm and 4 000 mm, respectively. V type of lower primary air is changed from vertical to level, and V-gutter of upper primary air horizontal bias burner is replaced by straight plate. Refractory belt area is adjusted from 80.64 m² to 63.36 m², and four mashgas flow neter are installed. According to experimental results, calculation formula of actual cut circle size is obtained, and correction factor K_{x} is determined to 1.132, moreover, the relationship between actual cut circle and primary air speed, secondary air speed is made. After transforming, test unit reduces boiler heating surface coking maximally, improves operation properties of mixed burning inferior coal, and unburned carbon content is controled to 3.29%. The optimization scheme can be popularized in the flexible transformation of anthracite combustion boiler.

Key words: four-angle cut round; anthracite boiler; flexible transformation; thermal test; cold test

基金项目:国家自然科学基金资助项目(91544108,51306142)

作者简介:熊英莹(1979—),女,山西太原人,讲师,博士,从事火电厂高效燃烧及污染物排放治理研究工作。E-mail:xiongyy@sxu.edu.cn 引用格式:熊英莹,谭厚章.四角切圆无烟煤燃烧系统灵活性改造优化研究[J].洁净煤技术,2018,24(1):108-114.

XIONG Yingying, TAN Houzhang. Optimize flexibility of four-angle cut round anthracite boiler combustion system [J]. Clean Coal Technology, 2018,24(1):108-114.

收稿日期:2018-01-02;责任编辑:白娅娜 DOI:10.13226/j.issn.1006-6772.2018.01.019

0 引 言

我国电力工业中70%以上的燃料来自于煤炭, 无烟煤和贫煤在电站锅炉燃用煤量中占40%以上。 难燃煤的煤化程度高,挥发分低,可磨性能差,反应 性低,着火与燃尽都比较困难,需要较高的着火与燃 尽温度,以及较长的燃尽时间。燃烧无烟煤锅炉基 本存在燃煤着火性能差、燃尽率低、锅炉设备燃烧不 稳、效率下降、受热面结渣严重等一系列问题。有些 电厂由于现有燃用煤种与设计煤种严重偏离,为电 厂运行安全带来极大隐患。此外,由于电厂普遍承 担着调峰任务,调峰意味着现有设备可以在较低负 荷下安全工作,所以必须适时结合锅炉实际情况进 行优化调整,维持锅炉安全高效运转。

对于无烟煤锅炉改造研究较多。王春昌等[1] 将燃用无烟煤锅炉进行了改烧烟煤的改造。崔永忠 等[2]对 420 t/h 燃烧无烟煤锅炉进行稳燃改造,包 括燃烧器改造、增加卫燃带等。目前改善锅炉对煤 种、低负荷运行适应性的主要办法是:采用对煤种 负荷具有良好适应性的宽调节比高稳燃性能的燃烧 器;在燃烧器区域的水冷壁炉墙上敷设一定厚度和 面积的隔热材料——卫燃带。采用设计性能良好的 燃烧器可取得一定成果,但由于烟气温度会随锅炉 负荷下降而降低,当负荷下降到某一极限值时,烟气 温度过低,不能满足煤粉气流着火要求,为避免出现 燃烧不稳定及熄火,必须投油运行,不利于电厂低成 本运行[3],所以燃用低挥发分劣质煤的锅炉大多在 燃烧器区域附近的水冷壁炉墙上敷设卫燃带。但 是,卫燃带的面积和敷设方式很难把握,敷设面积过 大,燃烧器区域烟温过高会加剧结渣,面积过小,其 稳燃作用不明显。敷设方式不当,可能形成结渣源, 影响正常运行。因此有必要对卫燃带敷设面积进行 系统研究,特别从稳定着火和燃烧角度等方面。本 文针对某 220 t/h 燃烧无烟煤锅炉,进行燃烧系统 灵活性改造优化研究,以期望最大限度减轻锅炉受 热面结焦情况,同时改善热电站锅炉掺烧劣质煤的 运行特性,为同类锅炉改造提供借鉴作用。

1 系统概况

某 220 t/h 锅炉采用北京巴布科克·威尔科克 斯(Babcock & Wilcox,简称 B & WB)公司设计生产 的 B&WB-220/9.81-M 型四角切圆固态排渣煤粉 锅炉,锅炉采用 Π 型布置,自然循环,单汽包、单段 蒸发、集中下降管循环蒸发系统。锅炉为全钢结构, 锅炉前部为炉膛,四周布满膜式水冷壁,炉膛出口处 布置屏式过热器,水平烟道内装设高低温两级过热 器,尾部竖井交错布置两级省煤器和两级空气预热 器。锅炉设计煤种为无烟煤,采用球磨机、中间粉 仓、热风送粉的制粉系统。该锅炉炉膛断面为正方 形,宽度和深度均为7570 mm。四周由光管和扁钢 焊成全密封的膜式水冷壁。

锅炉燃烧器为四角切圆布置,各风口从上到下 分别是三、上二、中二、上一、下一、下二,其中在下二 次风口内设有蒸汽雾化的助燃油枪,在锅炉运行时 引入了瓦斯燃烧系统,在各组喷燃器的下二次风口 加入了瓦斯喷嘴,燃用瓦斯量为0~4 200 m³/h,正 常情况下瓦斯气用量为1 500 m³/h。燃烧器布置如 图1 所示。

2 存在问题

由于燃用煤种和设计煤种之间的差异,煤质挥 发分降至 7%~8%时,锅炉飞灰可燃物含量由 5% 增至 25%,锅炉煤种适应性差,燃用超低挥发分无 烟煤时燃烧稳定性较差,易出现锅炉灭火事故;下一 次风和下二次风的实际切圆可能偏大,燃烧器区域 有明显结焦现象,水冷壁、屏式过热器结焦严重;制 粉系统起停对炉内燃烧扰动太大,制粉系统起停能 对炉膛出口温度造成近100℃波动。

3 热、冷态试验及结果分析

3.1 热态试验

根据影响煤粉着火的因素,对煤粉细度变化、锅 炉负荷、磨煤机启停、三次风、二次风、瓦斯等进行研 究。试验工况为停甲乙磨煤机,停瓦斯,关甲排粉机 时,观察三次风对炉膛出口烟温偏差的影响,测得乙 侧温度与甲侧温度间的温差,结果如图2所示。由 图2可知,三次风对炉膛出口烟温偏差的影响很大, 接近100℃左右。

Fig. 2 Influence of tertiary air on deviation of furnace exit temperature

停甲乙磨煤机、停瓦斯、关甲乙排粉机,观测乙 侧炉膛出口温度与甲侧炉膛出口温度差,研究二次 风对炉膛出口温度偏差的影响,如图3所示。由图 3可知,没有三次风影响时,烟温偏差为60℃左右, 说明二次风的切圆直径仍很大,造成出口残余旋转 大,温差偏大。

停甲乙磨煤机、停甲乙排粉机后,停瓦斯与供瓦 斯的炉膛出口温度偏差(乙侧炉膛出口温度-甲侧 炉膛出口温度)和平均温度(甲侧炉膛出口温度和 乙侧炉膛出口温度的平均值)如图 4 所示。由图 4 (a)可知,瓦斯供入时会影响炉膛出口温度偏差。 供入瓦斯后,炉膛出口温度偏差波动 20 ℃,因此要 合理控制瓦斯供入,尽量减少其对燃烧工况的影响。 由图 4(b)可知,加入瓦斯后,炉膛出口平均温度升 高,对屏式过热器挂渣不利,因为瓦斯的通入,煤粉 着火推迟,飞灰可燃物升高,影响热经济性。

Fig. 4 Influence of mashgas on deviation of furnace exit temperature

热态试验结果表明:① 煤粉变细后,煤粉着火 提前,炉膛温度升高,机械未完全燃烧热损失下降明 显,飞灰含碳量和大渣含碳量都有所降低,有利于稳 定燃烧和提高锅炉经济性。② 大负荷时,燃烧状况 良好,炉膛温度升高,而出口烟温基本不变;飞灰含 碳量和大渣含碳量下降明显,化学未完全燃烧热损 失降低明显,散热损失小,锅炉效率上升,热经济性 好。③ 停某侧磨煤机时,对炉膛出口温度影响很 大,炉膛出口温度下降 100 ℃左右;停掉排粉机,炉 膛温度升高,有利于燃烧,机械未完全燃烧损失降 低,锅炉热经济性高。

3.2 冷态试验

冷态试验是热态试验的补充,根据冷热态模化 条件——动量相等的原则,计算得出冷态下一、二、 三次风风速,试验包括飘带试验、炉膛速度场的测 量、贴壁速度场的测量。

改前飘带试验如图 5 所示(0 表示贴墙)。冷态 试验中,下一次风和上一次风贴壁严重,切圆燃烧方 式的流场组织较差,切圆直径过大,引起锅炉结渣。

根据试验数据绘制下二次风和下一次风速度分 布如图 6 所示。由图 6 得冷态时实际切圆直径分别 为 5 407.2 和 5 240.8 mm,明显偏大。冷态试验说 明炉膛内流场组织不好,切圆直径偏大,燃烧贴壁, 这也是结渣的原因之一。

4 灵活性改造优化方案

4.1 炉内实际切圆直径计算

试验机组燃烧系统为直流式四角切圆燃烧方 式,双切圆燃烧,其中一次风煤粉气流为反切(顺时 针旋向),假想切圆直径为600 mm;二次风气流为正 切(逆时针旋向),假想切圆直径为850 mm;投运以 来炉内受热面结焦严重影响锅炉安全、经济运行。 影响炉内结渣的因素繁多,但炉内空气动力场 不良是导致燃烧器区结渣的最主要因素之一。而炉 内假想切圆大小又直接影响了炉内空气动力场。如 果假想切圆太大,锅炉运行时,从燃烧器喷口喷出的 射流容易偏转,造成炽热的煤粉气流直接冲刷水冷 壁,导致结渣。但假想切圆直径越大,从上游邻角过 来的火焰气流更靠近射流根部,越有利于着火,混合 更强烈、炉内充满度更好。相反,若假想切圆直径过 小,高温火焰集中在炉膛中部,炉膛四周温度水平 低,不利于煤粉着火、混合和燃尽^[4-5]。

文献[6]推荐假想切圆直径 $D_0 = (0.05 \sim 0.12) \times B_0(B_0$ 为炉膛平均宽度)。但对于不同容量不同形式的锅炉并没有精确的计算公式,无法指导实际锅炉调整与改造,因此,有必要针对锅炉找到相对精确的实际切圆计算公式,对于锅炉改造与运行指导具有重要意义。

4.2 影响实际切圆直径的因素

影响实际切圆直径的因素主要有:假想切圆大 小,射流动量矩流率、气流偏斜、燃烧器组高宽比及 燃烧器喷口间隙、一次风和二次风的动量比、一次风 射流刚性、燃烧煤种及燃烧过程、四角风粉均匀性。

假想切圆直径越大,其实际切圆直径越大。射 流沿喷口轴线方向随距离的增长,其射流动量逐步 减弱,对圆形射流轴线上速度为^[7]

$$\frac{u_{\rm m}}{\overline{u}_0} = K_{\rm u} \left(\frac{\rho_0}{\rho_{\rm a}}\right)^{\frac{1}{2}} \frac{d_0}{x} \tag{1}$$

式中, $u_{\rm m}$ 为离喷口出口 x 距离处轴向速度,m/s; u_0 为喷口出口处轴向速度,m/s; K_u 为系数(对等温射 流 K_u =6.3); ρ_0 为喷出流体密度, kg/m^3 ; ρ_α 为周围 流体密度, kg/m^3 ; d_0 为喷嘴直径,mm;x 为离喷口轴 向距离, mm_o

由式(1)可知,射流进入炉膛后,沿轴线上速度 逐渐变小,射流刚性逐渐减弱,受到上邻角气流冲击 时射流产生偏斜,导致实际切圆直径比假想切圆直 径大。假想切圆直径越大,其射流受上邻角射流冲 击偏移就越大。

对已定尺寸的炉膛,从喷口到达切圆边缘的距 离是固定的,如式(1)中的 x 为定值,此时,射流动 量矩流率越大,表明射流出口速度越高,u₀越大,u_m 值就会越大。u_m值(即射到达切圆边的速度)越高, 其射流刚性就越好,射流偏移减小,因此,射流动量 矩流率越大,实际切圆相对就会越小。

影响因素可从设计和运行两方面考虑^[8-10]。设 计方面考虑因素:① 假想切圆直径与炉膛等效直径 之比 $D_0/D_{dl}(D_{dl}=2AB/(A+B))$,其中A为炉膛宽,B为炉膛深;② 燃烧器的高宽比h/b(h为燃烧器高 度,b为燃烧器喷口宽度);③ 燃烧器总面积与炉膛 截面积之比 $\Sigma A_i/A$;④ 燃烧器间隙率s/b。运行方 面考虑因素:① 二、一次风动量比 $(m_2v_2)/(m_1v_1)$; ② 燃烧器摆角 α 。

对以上影响因素进行分析,得出实际切圆的关 联式为^[11-12]

$$\frac{D_{y}}{D_{dl}} = K_{xs} \left(\frac{D_{0}}{D_{dl}}\right)^{1.56} \left(\frac{s}{h}\right)^{-0.7} \left(\frac{h}{b}\right)^{0.87} \left(\frac{m_{2}v_{2}}{m_{1}v_{1}}\right)^{0.27}$$

式中, D_v 为实际切圆直径,mm; K_{xs} 为修正系数。

经过计算(下二次风)得修正系数 K =1.132。

在设计一、二次风速状态下,冷态时实际切圆直 径为5407.2mm,炉膛宽度为7570mm,切圆上气 流速度最大点离水冷壁只有1000mm左右,若一次 风速稍微降低(热态时经常发生),炉内切圆就会刷 墙,加上热态时煤粉燃烧膨胀将进一步降低射流刚 性,热态时射流偏斜将更加严重,因此,原设计工况 下实际切圆太大,有必要通过降低燃烧器喷口假想 切圆直径来降低炉内实际切圆直径。

根据已有改造经验,将实际切圆直径控制 在 3 600 ~ 4 000 mm,使冷态下切圆边缘离水冷壁的 距离保持在 2 000 mm 左右。由式(2)可得到假想 切圆直径 D_0 为 653.5 ~ 699.3 mm,考虑保证炉膛内 煤粉气流既不冲刷水冷壁而引起结渣,又有较大的 火焰充满度,最后选定改造后假想切圆直径为 D_0 = 700 mm,实际切圆直径为 4 000 mm。

在冷态下依据式(2)计算实际切圆直径随二次 风、一次风风速的变化,一次风速度为23、25、27m/s 下,实际切圆大小随二次风速的变化如图7所示。

由图 7 可知,总风量一定的情况下,二次风速增 大时,一次风速减小,则实际切圆直径变大,容易引 112

Fig. 7 Relationship between the actual cut circle size and the secondary air speed

起结渣;一次风速增大时,一次风刚性增强,则实际 切圆直径变小;一次风射流偏转的主要原因之一是 由于上游邻角横扫过来的惯性力,惯性力是由上游 一、二、三次风混合后形成的综合动量所决定,特别 是一、二次风混合后形成的综合动量,二、一次风动 量比越大,则一次风射流偏转程度越大,炉内实际切 圆越大,越易引起结焦。

在热态设计状态下,一次风速 v₁=25 m/s,二次 风速 v₂=45 m/s时,充满度为0.6979,一次风不会 刷墙,但如果一次风速降低,火焰充满度快速增加, 还会引起结渣。

4.3 燃煤特性分析

在实际燃用煤种方面,根据热电站数据,选取试 验期间 14 d 数据进行统计,具体见表 1。由表 1 可 知,入炉煤挥发分 V_{daf} 为 8.33% ~ 14.78%,平均为 10.99%, $Q_{net,ar}$ 为 20.19 ~ 25.32 kJ/g,平均为 23.46 kJ/g,基本可以代表该机组日常的燃料情况。

表1 热电站日常燃用煤种性质

```
Table 1 Coal sample properties in thermal power plant
```

项目	$M_{\rm t}/$	$M_{\rm ad}/$	$A_{\rm ad}/$	$V_{\rm daf}/$	$w(S_{t,ad})/$	$Q_{ m net,ar}$
	%	%	%	%	%	$(kJ\boldsymbol{\cdot}g^{-1})$
最低	5.77	0.44	18.6	8.33	0.26	20. 19
最高	14.31	1.51	31.5	14.78	0.53	25.32
平均	8.16	0.98	22.86	10.99	0.39	23.46

由于现场条件有限,无法对燃煤进行细致测试, 采用普华煤质特性判别准则(文献[8])进行判断, 结果如下:

1) 着火稳定性指数 R_w

 $R_{\rm w} = 3.59 + 0.054 V_{\rm daf} \tag{3}$

*R*_w判断依据见表 2。试验期间入炉煤 *R*_w = 4.146~4.617,设计煤种 *R*_w = 4.058,校核煤种 *R*_w =

4.272,因此,该机组燃用的无烟煤着火稳定难。

表2	着火稳定性指数判断依据
~~ ~	

Table 2 Decision fundament on fire stability index

$R_{ m w}$	<4	4 ~4.65	4.65~5	5 ~ 5.7	> 5.7
着火稳定性	极难	难	中等	易	极易

2) 燃料燃尽性指数 R_i

$$R_{\rm i} = 1.22 + 0.11 V_{\rm daf}$$
 (4)

*R*_j 判断依据见表 3。试验期间入炉煤 *R*_j = 2.353~3.313,设计煤种 *R*_j = 2.174,校核煤种 *R*_j = 2.609,因此,该机组燃用的无烟煤燃尽指数为中等~极难。

表 3 燃料燃尽性指数判断依据 Table 3 Decision fundament on fuel burnout index

R _j	<2.5	2.5 ~ 3.0	3.0~4.4	4.4~5.7	> 5.7
燃料燃尽性	极难	难	中等	易	极易

3) 着火温度指数 T_d

 $T_{d} = 654 - 1.9V_{daf} + 0.43A_{ad} - 4.5M_{ad}$ (5) T_{d} 判断依据见表 4。试验期间入炉煤 $T_{d} =$ 621~640 ℃,设计煤种 $T_{d} = 630$ ℃,校核煤种 $T_{d} =$ 632 ℃,因此,该机组燃用的无烟煤燃烧稳定性为 难~极难。

表 4 着火温度指数判断依据 Table 4 Decision fundament on ignition temperature index

		q		
$T_{\rm d}$ /°C	560 ~ 593	593 ~613	613 ~ 638	> 638
燃烧稳定性	易稳定区	中等稳定区	难稳定区	极难稳定区

由上述分析可知,该机组设计煤种、校核煤种与 现有燃煤差别较大,原有设计方案在实际使用中要 重新考量。对于燃料供给方面,要适时根据煤种调 整煤粉细度。考虑到瓦斯气体在四角供应不均匀的 情况和瓦斯自身特点(瓦斯的流量在3000 m³/h 时 供应热量可占到整个热负荷的15.15% 左右,运行 时对出口烟温的影响在30~40 ℃),建议加装4 台 瓦斯流量表。

4.4 卫燃带面积计算

试验机组采用约80 m²的销钉式卫燃带,卫燃带表面采用耐火材料,卫燃带敷设方式为在四面炉墙中部各敷设5600 mm×2800 mm长方形,其中卫燃带最高处与三次风喷口下沿持平。该卫燃带主要敷设在燃烧器区域,预期目的是减少辐射换热,提高

敷设区域炉膛中心区域温度,最大限度地保证燃料 着火,稳定燃烧。卫燃带敷设情况如图8所示。

Fig. 8 Refractory belt laying condition 卫燃带敷设面积为^[13-15]

$$F_{\rm r} = \frac{F_{\rm 1}}{1 - \xi} - \frac{D_{\rm min}r}{\varphi\sigma_0(1 - \xi)\left(\alpha_{\rm 1}T_{\rm 1m}^4 - T_{\rm w}^4\right)} \quad (6)$$

式中, F_r 为卫燃带面积, m^2 ; F_1 为炉内水冷壁管面 积, m^2 ; D_{min} 为最低稳燃负荷,%;r为气化潜 热,kJ/kg; T_{lm} 为炉内最低平均温度,K; T_w 为水冷壁 管外表温度,K; φ 为炉膛保温系数; ξ 为相对灰污系 数; σ_0 为玻尔茨曼常数,J/K; α_1 为水冷壁管与炉内 火焰间系统黑度。

设入炉煤挥发分为 10%,锅炉设计出力为 220 t/h,考虑最低稳燃负荷为 75%。炉内稳定燃烧的最 低温度为1 159 K,相应 T_{w} =650 K,r=1 300 kJ/kg, 对于 $\xi_{\alpha_{l}}$,均采用相关资料的推荐值 ξ =0.5, φ = 0.98, α_{1} =0.98, σ_{0} =5.67×10⁻⁸J/K,可以计算出 F_{r} 在 75% 负荷情况下的数值为 50.79 m²。若锅炉运 行在 75% 以下时,卫燃带还有必要增加部分面积, 目前锅炉多数时间在满负荷 220 t/h 状态下运行, 现有卫燃带面积约为 80 m²,显然偏高,有必要减少 部分面积。

按上述卫燃带面积计算公式,可得不同卫燃带 敷设面积下,燃烧器区域的平均温度 T 随锅炉负荷 D 的变化,具体如图9 所示。

对图 9 曲线进行拟合,结果为:① 不敷设卫燃带 时, T = 683.643 79 + 740.136 21D - 487.183 45 D^2 + 162.738 26 D^3 ;② 敷设 30 m² 卫燃带, T=717.563 57 + 990.826 59D-710.627 56 D^2 +246.569 26 D^3 ;③ 敷设 60 m² 卫 燃 带, T=738.696 29+1 108.232 85D -816.283 31 D^2 +286.548 51 D^3 ;④ 敷设 90 m² 卫燃带 时, T = 753.087 54 + 1 178.945 11 D-879.876 06 D^2 + 310.649 44 D^3 。

图9 卫燃带敷设面积关联图

Fig. 9 Association graph of refractory belt laying area

调整前卫燃带面积为 80.64 m²,根据图 9 计算 调整后卫燃带面积为 63.36m²,减小了约 20%,通过 利用两侧结焦特性不同的特点,减小焦块大小,可在 一定程度上缓解结焦严重的现象。

5 结 论

1)220 t/h 无烟煤锅炉灵活性改造方案如下:① 假想切圆直径为700 mm,对应的实际切圆 直径为4000 mm;② 下一次风喷口的 V 型由垂直 方向改为水平方向;③ 将原上一次风百叶窗水平 浓淡燃烧器喷口 V 型稳燃体去除,改为直板 型;④ 卫燃带面积由80.64 m² 调整为63.36 m²; ⑤ 由于瓦斯气体在四角供应不均匀,建议加装4 台瓦斯流量表。

2)该机组经过灵活性燃烧优化改造后,锅炉燃 尽性能较好,风粉浓度在线监测装置显示,飞灰含碳 量平均控制在 3.29%;锅炉结焦特性也得到改善。

3)通过优化研究,提出了修正后的冷态实际切圆计算公式。通过试验数据得到主气流(下二次风)修正系数 *K*_{xs}=1.132,并做出实际切圆与一次风速、二次风速的关系曲线,这对热态时实际切圆大小的预测有指导意义。

参考文献(References):

[1] 王春昌,王恩泽,张伟. 燃用无烟煤锅炉改烧烟煤的实践[J].
 热力发电,2013,42(5):69-71.

WANG Chunchang, WANG Enze, ZHANG Wei. Retrofitting of firing bituminous coal for boilers burning anthracite coal[J]. Thermal Power Generation, 2013, 42(5):69–71.

[2] 崔永忠,高苑辉,王力,等. 燃烧无烟煤锅炉稳定燃烧的治理[J]. 电力建设,2002,23(8):25-27.

CUI Yongzhong, GAO Yuanhui, WANG Li, et al. Control on stability of combustion of anthracite coal fired boiler[J]. Electric Power Construction, 2002, 23(8):25-27.

[3] 魏博,文彪,谭厚章,等. 准东煤掺混焦炭燃烧特性研究[J]. 热力发电,2017,46(6):51-55.
 WEI Bo, WEN Biao, TAN Houzhang, et al. Co-combustion charac-

teristics of Zhundong coal mixed with coke powder [J]. Electric Power Construction, 2017, 46(6):51–55.

 [4] 周志军,黄镇宇,朱自力,等.射流偏转及实际炉膛切圆的分析 计算方法[J].浙江大学学报(工学版),2000,34(6):642-646.

ZHOU Zhijun, HUANG Zhenyu, ZHU Zili, et al. Jet deflection and analytic calculation of the actual furnace tangential circle[J]. Journal of Zhejiang University (Engineering Science), 2000, 34 (6): 642–646.

- [5] 岑可法.锅炉燃烧试验研究方法及测量技术[M].北京:水利 电力出版社,1987.
- [6] 陈学俊,陈听宽.锅炉原理[M].2版.北京:机械工业出版社, 1991.
 - 7] 陈刚, 丘纪华, 张志国, 等. 稳燃腔煤粉燃烧器的试验研究及应 用[J]. 动力工程, 1994(6):37-41,63.
 - CHEN Gang, QIU Jihua, ZHANG Zhiguo, et al. Experimental research on tubular pulverized coal burenrs[J]. Power Engineering, 1994(6):37-41,63.
 - 3] 陈刚.四角切向燃煤锅炉炉内实际切圆的计算[J].电站系统 工程,2002,18(4):17-18.

CHEN Gang. Calculation of actual tangential circle diameter in tangential PC-fired boiler furnace [J]. Power System Engineering, 2002,18(4):17-18.

- [9] 胡光,金正淑.四角切圆锅炉浓淡燃烧器的应用研究[J]. 华东 电力,2003,31(1):32-33.
- [10] 刘福国,潘风国. 切向燃烧炉内实际切圆直径的回归分析
 [J]. 锅炉技术,1999,30(2):7-9.
 LIU Fuguo, PAN Fengguo. Regression analysis of the actual tangential circle diameter in furnace for tangential-firing boiler[J].
 Boiler Technology,1999,30(2):7-9.
- [11] 何佩繁,赵仲虎,秦裕馄.煤粉燃烧器的设计和运行[M].北 京:机械工业出版社,1987.
- [12] 岑可法,焚建人.燃烧流体力学[M].北京:水力电力出版社, 1991.
- [13] 陈冬林,李慧勇,周臻.确定燃煤锅炉卫燃带敷设面积的一种 代数计算方法[J].动力工程,2006,26(5):638-640,675.
 CHEN Donglin, LI Huiyong, ZHOU Zhen. An algebraic method for determ ining the refractory belt area of coal fired boilers[J].
 Journal of Power Engineering,2006,26(5):638-640,675.
- [14] 陈冬林. 准恒的燃烧理论与试验研究[D]. 武汉:华中科技大学,2003.
- [15] 赵铁军,曹际恒.火电厂锅炉卫燃带的改造[J].中国电力, 1997,30(12):68-69.