还原气氛下煤和生物质灰熔融行为

张冠军

(中国大唐集团科学技术研究院火力发电技术研究所,北京 100040)

摘 要:为了揭示还原气氛下煤和生物质灰在高温转化过程中的熔融特性,利用灰熔融性测试、高温 在线 XRD,考察了生物质添加对灰熔融特征温度的影响,探讨了矿物相的分解、还原和相变反 应,SiO₂-CaO 二元相图验证了硅酸盐类型的变化。结果表明:添加麦秸明显降低了灰熔融特征温度, 软化温度和变形温度呈现单调的下降趋势。当生物质质量分数达到 50% 时,灰的流动温度和半球温 度达到最低值。生物质的高硅含量使其具有较高的 ΔT_{FT-DT} 值,同时高 K₂O 含量又使其变形温度较 低。高温时,碳酸盐和硫酸盐发生分解反应,铁氧化物和硫酸盐被还原为金属态铁和硫化物,简单氧 化物与 SiO₂ 合成硅酸盐。灰的熔融特征温度很大程度取决于无定型物的生成速率和软化速率。 关键词:还原气氛;煤;生物质;灰熔融;HT-XRD

中图分类号:TK6 文献标志码:A 文章编号:1006-6772(2017)06-0065-05

Ash melting behavior of coal and biomass in reducing atmosphere

ZHANG Guanjun

(Institute of Thermal Power Technology, China Datang Corporation Science and Technology Research Institute, Beijing 100040, China)

Abstract: In order to reveal ash melting characteristics of coal and biomass during the high-temperature thermal conversion process, the influence of biomass addition on ash melting characteristic temperatures was investigated by ash fusion temperature test and high-temperature on-line XRD analysis. The mineral phase decomposition, reduction and phase transformation were investigated, and the changes of silicate species were verified by SiO₂-CaO binary phase diagram. The results show that the addition of wheat straw significantly reduces the ash melting characteristic temperatures; the softening and deformation temperature shows a monotonically decreasing trend. When the biomass mass fraction reaches 50%, the ash flow temperature and hemisphere temperature go to be the lowest value. The high silicon content of the biomass leads to a high $\Delta T_{\rm FT-DT}$ value; while the high K₂O content leads to a lower DT value. At high temperature range, carbonates and sulfates decomposition reactions occurre, iron oxides and sulfates are reduced to metallic iron and sulfides, simple oxides and SiO₂ will form silicates. The ash melting characteristic temperature largely dependes on the amorphous material formation rate and its softening rate. **Key words**: reducing atmosphere; coal; biomass; ash melting; high-temperature on-line XRD

0 引 言

我国预计 2030 年左右 CO₂ 排放将达到峰值, 同时 2030 年非化石能源占一次能源消费比例提高 到 20% 左右^[1]。火电企业控制温室气体排放的压 力剧增,但也为"零碳排放"的生物质规模化应用提 供了契机^[2-4]。生物质用于发电也有局限性,除了 密度轻、热值低外,生物质的高碱金属含量导致了低 灰熔融性和高腐蚀^[5-7]。除了积灰和腐蚀,生物质 在电站锅炉混烧应用还存在诸多潜在风险,如积灰、 腐蚀、未燃尽碳、电除尘器影响、脱硫脱硝设备影响 等^[8-11]。生物质中的碱金属元素在燃烧过程中会形 成气态产物,包括 KC1、NaCl、KOH、NaOH、K₂SO₄和 Na₂SO₄,气态产物会和飞灰在烟气下游形成了沾污 和积灰^[12-14]。不同气氛下灰熔融行为差异较 大^[15],还原气氛加剧了锅炉的结焦、积灰和高温腐

基金项目:中国大唐集团公司重大科技项目(CDT1-17-02)

作者简介:张冠军(1983—),男,河北张家口人,工程师,博士,从事火电燃烧和电力环保研究工作。E-mail:guanjunzh@hotmail.com 引用格式:张冠军.还原气氛下煤和生物质灰熔融行为[J].洁净煤技术,2017,23(6):65-69.

ZHANG Guanjun. Ash melting behavior of coal and biomass in reducing atmosphere[J]. Clean Coal Technology, 2017, 23(6):65-69.

收稿日期:2017-07-18;责任编辑:孙淑君 DOI:10.13226/j.issn.1006-6772.2017.06.013

蚀,严重影响电厂运行的安全性,但还原气氛下灰熔 融特性研究的报道较少。本文利用高温在线 XRD (HT-XRD)和灰熔融性(AFTs)测试,对还原气氛下 煤和生物质灰的熔融行为进行研究,旨在揭示电站 锅炉炉膛还原气氛下矿物组分转化和灰熔融机理, 为解决生物质在发电领域规模化应用的结焦和腐蚀 问题提供科学参考。

1 试验样品和研究方法

1.1 试验样品

选取褐煤(HKN)和麦秸(WS)作为试验样品, 其工业、元素分析和热值见表1。褐煤和麦秸在105 ℃进行干燥后,破碎到2 mm 以下,按照预设的混合 比例制取混合样,HW10 和 HW50 分别代表质量分 数为10%和50%麦秸混合比例(文中涉及到的百分数,如未特殊说明均为质量分数)。试验样品在450 ℃、通空气灰化24h得到试验灰样,全部灰样研磨 至63 μm以下,留存备用。

1.2 研究方法

灰熔融特征温度测试给出灰的烧结温度(Sintering)和灰熔融特征温度点(AFTs),即变形温度 (DT)、软化温度(ST)、半球温度(HT)和流动温度 (FT)。试验用还原性气氛选择体积分数为35%的 CO和65%的CO₂混合气体。灰成分通过X射线 荧光光谱法(XRF)分析得到,见表2。利用Bruker "D8 Discover"X射线衍射光谱测试仪对灰矿物相组 分进行原位定量研究,由于没有"淬冷"流程,避免 了冷却过程矿物质相变化引起的误差。

表 1 样品的工业、元素分析和热值 Table 1 Proximate analysis, ultimate analysis and heating values of samples

					4				
样品	工业分析/%					元素分析/%	$Q_{ m gr,ar}$	$Q_{ m net, ar}$	
	$M_{\rm ar}$	$A_{\rm d}$	$V_{\rm d}$	$FC_{\rm d}$	C _{daf} H _{daf}	N_{daf} $S_{t,daf}$	$\mathbf{O}_{\mathrm{daf}}$	$(MJ \cdot kg^{-1})$	$(MJ \cdot kg^{-1})$
褐煤(HKN)	16.32	4.33	49.89	45. 78	67. 41 4. 42	0. 84 0. 81	22.44	26.10	18.14
麦秸(WS)	6.25	6.88	75.85	17.27	45.87 5.57	0.63 0.30	40.84	25.13	16.92

表 2 灰成分及其碱酸比 Table 2 Ash content and base to acid ratio

								_							
长日	灰成分分析/%													碱酸比	
14-111	CO_2	Na_2O	MgO	Al ₂ O ₃	SiO ₂	P_2O_5	SO_3	Cl	K_2O	CaO	${\rm TiO}_2$	$\mathrm{Fe}_2\mathrm{O}_3$	微量氧化物	摩尔比	质量比
HKN	17.60	6.30	12.92	2.85	6.10	0.03	16.80	0.37	0. 59	28.10	0.21	7.60	0.54	5.17	2.86
HW10	15.00	5.50	11.64	2.78	12. 45	0.26	15.00	0.62	2.51	26.72	0.20	6.82	0.50	3.15	2.08
HW50	10.30	2.60	7.06	1.72	38.02	0.97	9.00	1.20	8.74	16.28	0.13	3.64	0.34	0.89	0.80
WS	6.60	—	2.35	0. 98	61.42	1.73	3.13	1.75	14.86	6.34	0.06	0.59	0.20	0.32	0.37

2 结果和讨论

2.1 生物质添加对灰熔融特征温度的影响

为了考察还原气氛下生物质的添加对灰熔融特 性影响,分别对 HKN、HW10、HW50 和 WS 进行灰熔 融性测试。如图 1 所示,随着生物质比例的提高, FT 和 HT 随生物质混合比例的增加呈现"V"型变化 趋势,在 HW50 处达到最小值。ST 和 DT 单调减小, 而烧结温度单调增加。生物质的添加使灰在更大的 温度区间完成熔融,即 FT 与 DT 的温度差值 $\Delta T_{\rm FT-DT}$ 值变大。

根据 Vargas 等^[16]的计算方法,得到灰成分中的 碱性氧化物与酸性氧化物的比值(下文简称为碱酸 66

图1 还原气氛下生物质占比对灰熔融特征温度的影响

Fig. 1 Effect of biomass fraction on ash melting characteristic temperature in reducing atmosphere

比或(B/A))(表2)。碱酸比与灰熔融特征温度密 切相关,随机网络理论(random network theory)^[16]为

碱酸比与灰熔融特征温度的相关性提供了理论依 据。在随机网络模型中,高价位离子占据中心位置, 与架桥氧连接形成网络结构,高温时网络结构的完 整程度决定了灰的熔融特性。常见金属阳离子根据 其离子势(离子价态与离子半径的比值)的大小排 序如下^[17]:Si⁴⁺(9.5)>Ti⁴⁺(5.9)>Al³⁺(5.9)>Fe³⁺ $(4.7) > Mg^{2+}(3.0) > Fe^{2+}(2.7) > Ca^{2+}(2.0) > K^{+}$ (1.1) > Na⁺(0.75)。根据离子势的大小及其在随 机网络结构中的作用,将金属阳离子分类如下^[16]: ① 网络形成离子(network formers),主要包括 Si⁴⁺、 Ti⁴⁺,中心位置的Si⁴⁺通过架桥氧原子形成不规则网 络结构的复杂离子或多聚物,通常认为网络形成离 子有利于提高灰的熔融特征温度。硅酸盐玻璃态矿 物质就是以硅原子为中心,同周围氧原子构成正四 面体为基础,形成的三维方向不规则的网络结构。 ② 网络修饰离子(network modifiers),主要包括 Na⁺、K⁺、Mg²⁺、Ca²⁺和Fe²⁺,网络修饰离子进入网架 内部,改变网络结构,终止了多聚物集聚。由于网络 修饰离子破坏了网络结构的完整性,通常认为其降 低灰的熔融特征温度。③ 两性离子(amphoterics), 主要包括 Al3+、Fe3+,表现出介于网络形成离子和网 络修饰离子之间的中间性质,该离子在网络结构中 的角色,取决于其所处区域的网络形成离子和网络 修饰离子的构成形式和原子连接方式。

HW50的摩尔酸碱比和质量酸碱比分别为0.89

和 0.80,当 B/A≈1 时,灰熔融特征温度出现最小值 (图1),说明灰成分接近共熔物。当 B/A≪1 时,由 于四面体的高度配位,随机网络结构非常坚固,WS 的酸碱比和质量酸碱比分别为 0.32 和 0.37,表现 为高的流动温度(图1)。同时,生物质灰中的 高 SiO, 和 K,O 含量使 WS 分别获得了较高的 $\Delta T_{\text{FT-DT}}$ 值和较低的 DT。当 B/A>>1 时,灰的熔融 特征温度取决于氧化物单体的熔融特征温度(图 1)。碱酸比源于硅酸盐四面体结构,其中2个硅原 子与氧原子相连^[16]。根据氧化物中氧原子的赠予 能力,灰成分分类为酸性氧化物、碱性氧化物和两性 氧化物。酸性氧化物(SiO,、TiO,)和两性氧化物 (Al_2O_3, Fe_2O_3) 接受氧原子并构成四面体网络结构, 提高了灰熔融特征温度。碱土金属氧化物 (CaO、MgO和FeO)会把2个硅原子之间的键变长. 使硅酸盐网络结构变弱。碱金属氧化物(K,O、 Na,0)成为硅酸盐网络结构的终端基团,破坏了网 络结构的共价键,显著降低了灰熔融温度[16]。

2.1 生物质添加对灰中矿物质组分的影响

利用 HT-XRD,对还原气氛下矿物质组分的高 温转化进行了试验。考虑到发电厂实际掺烧比例普 遍小于 15%,测试样品选择 HKN、HW05(生物质掺 混比例 5%)和 HW15(生物质掺混比例 15%)。测 试温度为 500~1 000 ℃,温度间隔 100 K。还原气 氛下温度对矿物质组分的影响如图 2 所示。

由图2可知,灰中各矿物质组分的占比及种类 均发生了明显的变化。一方面,随温度的升高,碳酸 盐和硫酸盐发生分解反应、碱土金属和二氧化硅发 生合成反应生成硅酸盐、金属铁析出、低熔点碱金属 硅酸盐类转化为无定型态;另一方面,随着生物质的 添加,降低了碳酸盐和硫酸盐的分解反应以及硅酸 盐的合成反应温度,硅酸盐和无定型矿物质的含量 也明显变大,这些变化与原样品灰成分的差异性以 及动力学因素紧密相关。

按照矿物质分组,归纳生物质的添加对矿物相 的影响如下:

1)碳酸盐

碳酸盐(主要是 CaCO₃)在高温时的变化体现 如下:①在500℃,CaCO₃含量从45%(HKN)减小 到36%(HW15),这主要是由于生物质灰中的 Ca-CO₃含量低。②HKN和HW05中CaCO₃在800℃ 完成分解反应,而HW15则在700℃完成分解反应。 导致HW15在较低温度完成分解的原因有两个方 面:一方面,HW15中的CaCO₃含量较低,根据反应 动力学,少量的CaCO₃会更快的完成分解;另一方 面,CaCO₃分解生成的CaO和SiO₂生成硅酸盐,由 于HW15中SiO₂含量相对较多,硅酸盐的生成消耗 了碳酸盐的分解产物CaO,促进了CaCO₃的分解反 应向正方向转移。

2) 硫化物和硫酸盐

HKN 中的硫酸盐矿物相有无水石膏(CaSO₄) 和芒硝(Na₂SO₄),生物质的添加使 HW05 和 HW15 新生成了堇青石(K₂SO₄)。由于生物质的高 K₂O 含 量,芒硝(Na₂SO₄)逐渐被堇青石(K₂SO₄)所取代。 根据硫酸盐和硫化物质量分数的变化趋势可知,一 部分硫酸盐转化为硫化物,另一部分则转变为无定 型物质。

3) 单质铁和铁氧化物

单质铁和铁氧化物随温度的升高和生物质的增加变化不明显。HKN和HW05在600℃时生成少量的单质铁,而HW15在700℃时生成,微小的差异可能源于测试误差。从表2可知,HKN和WS灰中Fe₂O₃含量分别为7.60%和0.59%,WS的添加大幅降低了HW15的铁含量。HT-XRD测试是在过量还原性气体中进行,受反应动力学的影响,少量未被还原的铁氧化物与单质铁同时存在。

4)简单氧化物

简单氧化物由 MgO、CaO 和 SiO₂构成。在 500~600 ℃,测试灰样中简单氧化物差异较小。在 高温段,灰中简单氧化物含量随生物质的添加明显 减少,而硅酸盐增多。从表 2 得出,HKN 灰中过量 的 CaO 足以将全部 SiO₂转化为硅酸盐。在 1 000 ℃时,除了转化为硅酸盐,HKN 灰分中还有 17% 的 CaO 单体存在,CaO 单体颗粒物会阻碍熔融态物质 的流动性,提高了 HKN 的 AFTs。HW15 灰分 中 SiO₂含量较高,与更多的简单氧化物生成硅酸 盐。受反应动力学制约,1 000 ℃时,HW15 还有少 量的 SiO₂(1%),CaO(2%)和 MgO(9%)还未转化 为硅酸盐,仍然以单体的形式存在。

5) 硅酸盐

68

由图2可知,温度升高和生物质添加均会增大 硅酸盐的量。如上所述,秸秆中 SiO,含量高是导致 高温段硅酸盐形成的主要原因。生物质的添加不仅 增加了硅酸盐含量,而且增加了硅酸盐种类。HKN 中只含有斜硅钙石(Ca,SiO₄)一种硅酸盐矿物。除 了斜硅钙石,HW05 中检测到镁黄长石和钙铝黄长 石(Ca₂(Mg²⁺, Al³⁺)(Si⁴⁺, Al³⁺)SiO₇)的固溶体。除 了以上3种硅酸盐,HW15中还检测到镁硅钙石 $Ca_3Mg(SiO_4)_{20}$ 生物质的添加促进了高硅含量的 硅酸盐矿物的形成。从"SiO,-CaO"二元相图(图 3) 可以得到,当 SiO₂/(SiO₂+CaO)质量分数从 0.18 (HKN) 增加到 0.42(HW15), 硅酸盐种类也发生了 明显变化。在1000℃以下(虚线框内),矿物相从 CaO和 Ca2SiO4(HKN)转变为 Ca3Si2O7 和 CaSiO3 (HW15),与HT-XRD的测试结果相吻合。如果 用Mg和Al取代硅酸盐Ca₃Si₂O₇和CaSiO₃中的部 分 Ca 和 Si, 就会生成 Ca₂ (Mg²⁺, Al³⁺) (Si⁴⁺, Al³⁺)SiO₇)固溶体和 Ca₃Mg(SiO₄)₂,验证了 HT-XRD 的测试结果,即生物质的增加导致了固溶体的 生成。

3 结 论

1)还原气氛下,麦秸的添加明显降低了灰的熔融特征温度,在生物质质量分数为50%时HT和FT 达到最低值,ST和DT呈现单调的下降趋势。灰的 酸碱比与其熔融特征温度密切相关,HKN(B/A≫1) 的CaO含量较高,高温时未熔的CaO固体颗粒会阻 碍熔融态物质的流动性,明显提高了HKN的FT。 HW50(B/A≈1),灰成分接近共熔体,具有低的熔 融温度。WS(B/A \ll 1),在高温时能够保持较完整 网络结构,使具有较高的 $\Delta T_{\text{FT-DT}}$ 值,高 K₂O 含量又 使 WS 中的 DT 值降低。

2)随着温度升高碳酸盐和硫酸盐发生分解反 应,生成简单氧化物(CaO)。新生成的和原有的简 单氧化物一起与SiO₂合成为硅酸盐。铁氧化物和 硫酸盐被还原为单质铁和硫化物。由于动力学的原 因,在1000 °C,还原气氛中单质铁和铁氧化物同时 存在。生物质的添加同时增加了硅酸盐的种类和硅 酸盐的量,HKN 只含有斜硅钙石(Ca₂SiO₄)一种硅 酸盐矿物,HW15 同时含有 Ca₂SiO₄、Ca₃Mg(SiO₄)₂ 和 Ca₂(Mg²⁺,Al³⁺)(Si⁴⁺,Al³⁺)SiO₇)。

参考文献(References):

 [1] 毛健雄. 燃煤电站 CO₂ 减排技术的探讨[J]. 分布式能源, 2017,2(1):35-43.
 MAO Jianxiong. CO₂ emission reduction technology for coal-fired

power plant[J]. Distributed Energy,2017,2(1):35–43.

[2] 黄达其,陈佳琼. 我国生物质气化发电技术应用及展望[J]. 热力发电,2008,37(10):6-8.
 HUANG Daqi, CHEN Jianqiong. Application and prospects of pow-

er generation technology with biomass gasification in China [1]. Thermal Power Generation,2008,37(10):6-8.

- [3] 李季,孙佳伟,郭利,等. 生物质气化新技术研究进展[J]. 热力发电,2016,45(4):1-6.
 LI Ji,SUN Jiawei,GUO Li, et al. Research progress on new biomass gasification technology[J]. Thermal Power Generation,2016, 45(4):1-6.
- [4] 徐向乾,路春美,张梦珠,等.生物质与煤共燃技术[J].热力发电,2008,37(5):50-53.

XU Xiangqian,LU Chunmei,ZHANG Mengzhu,et al. Co-combustion technology of biomass with coal[J]. Thermal Power Generation,2008,37(5):50-53.

- [5] BANERJEE Amit, MISHRA P R, Mohanty Ashok, et al. Distribution of mineral species in different coal seams of Talcher coalfield and its transformation behavior at varying temperatures [J]. International Journal of Coal Science & Technology, 2016, 3 (2):97-103.
- [6] 胡云鹏,程世庆,孙鹏,等. 生物质及其与煤掺烧的灰熔融特性研究[J]. 热力发电,2011,40(10):8-12.
 HU Yunpeng, CHENG Shiqing, SUN Peng, et al. Study on fusion behavior of ash from mixedly burning boimass with coal[J]. Thermal Power Generation,2011,40(10):8-12.
- [7] 刘蕊,岳增武.燃用生物质锅炉末级过热器管腐蚀原因分析

[J]. 热力发电, 2013, 42(2): 98-100.

LIU Rui, YUE Zengwu. Corrosion of TP347H final superheater on a biomass boiler [J]. Thermal Power Generation, 2013, 42(2): 98-100.

- [8] WANG Zhijuan, SONG Yuanming. Adsorption properties of CFBC ash-cement pastes as compared with PCC fly ash-cement pastes [J]. International Journal of Coal Science & Technology, 2016, 3 (1):62-67.
- [9] MISHRA Vivek, SHARMA Mamta, Chakravarty Sanchita, et al. Changes in organic structure and mineral phases transformation of coal during heat treatment on laboratory scale[J]. International Journal of Coal Science & Technology, 2016, 3(4):418-428.
- [10] SAHOO Prafulla Kumar, KIM Kangjoo, POWELL M A, et al. Recovery of metals and other beneficial products from coal fly ash: A sustainable approach for fly ash management [J]. International Journal of Coal Science & Technology, 2016, 3(3):267-283.
- [11] 印佳敏,吴占松. TP347H 在生物质锅炉过热器气相条件下的腐蚀特性(II)[J]. 热力发电,2009,38(7):41-45.
 YIN Jiamin, WU Zhansong. Corrosion characters of TP347H steel under atmosphere of superheaters of biomassburned boilers(II)
 [J]. Thermal Power Generation,2009,38(7):41-45.
- 12) MI Jianxin, WANG Ningbo, WANG Mingfeng, et al. Investigation on the catalytic effects of AAEM during steam gasification and the resultant char reactivity in oxygen using Shengli lignite at different forms[J]. International Journal of Coal Science & Technology, 2015,2(3):223-231.
- [13] 王慧丽. 循环流化床锅炉结焦原因分析及预防措施[J]. 热力 发电,2007,36(2):28-30.

WANG Huili. Cause analysis of slagging in CFB boilers and preventive measures thereof[J]. Thermal Power Generation,2007,36 (2):28-30.

- [14] 岳茂振,王永征,卞素芳,等. 生物质与煤混燃过程中的腐蚀及其防治措施[J]. 热力发电,2011,40(5):35-38.
 YUE Maozheng, WANG Yongzheng, BIAN Sufang, et al. Corrosion in the process of mixedly burning biomass with coal and preventive measures thereof[J]. Thermal Power Generation, 2011,40(5):35-38.
- [15] LI Haibin, YU Yu, HAN Minfang, et al. Simulation of coal char gasification using O₂/CO₂ [J]. International Journal of Coal Science & Technology 2014,1(1):81-87.
- [16] VARGAS S, FRANDSEN F J, DAM-JOHANSEN K. Rheological properties of high-temperature melts of coal ashes and other silicates[J]. Progress in Energy & Combustion Science, 2001, 27 (3):237-429.
- [17] VORRES. Melting behavior of coal ash materials from coal ash composition [J]. Quaternary International, 1977, 371 (2): 197-208.