Vol. 23 No. 5

Sep. 2017

商用蜂窝式 SCR 催化剂脱除 NOx 试验研究

陈崇明1,郁金星2,陈二松1,李振海1

(1. 国网河北省电力公司电力科学研究院,河北 石家庄 050021;2. 河北省电力建设调整试验所,河北 石家庄 050021)

摘 要:为了评价燃煤电厂广泛采用的选择性催化还原工艺对不同形态 NO_x 的脱除效果,以某商用蜂窝式 SCR 催化剂为例,在 SCR 脱硝试验装置上研究了氧量、温度、空速、氨氮摩尔比等反应条件对 NO_xN_2O 和 NO_2 脱除过程的影响。结果表明,氧量可以促进 NO 氧化以及 NO 与氨的催化还原反应;高温可以促进 NO 的脱除和氨气氧化为 N_2O ;空速升高会导致 NO 脱除率先升高后降低;氨氮摩尔比提高在促进 NO 脱除的同时会增加氨逃逸;与 NO_2 可以完全脱除相反, N_2O 与氨气不发生反应。因此,为真正实现 NO_x 的超净排放,应适当控制锅炉运行参数避免 N_2O 的生成。

关键词:SCR 催化剂;NO, 脱除;氨气氧化

中图分类号:X511

文献标志码:A

文章编号:1006-6772(2017)05-0088-04

Experimental research on NO_x removal by using a commercial honeycomb type SCR catalysts

CHEN Chongming¹, YU Jinxing², CHEN Ersong¹, LI Zhenhai¹

(1. State Grid Hebei Electric Power Research Institute, Shijiazhuang \ 050021, China; 2. Hebei Electric Power Commissioning Institute, Shijiazhuang \ 050021, China)

Key words: SCR catalyst; NO, removal; ammonia oxidation

0 引 言

选择性催化还原(selective catalytic reduction, SCR)技术由于技术成熟、脱硝效率高、无二次污染等,在燃煤电厂得到了广泛的应用。催化剂是 SCR 工艺的核心,对控制 NO_x 排放和实现脱硝

装置的经济稳定运行具有重要影响。当前电厂普遍采用的商用催化剂是 V_2O_5/TiO_2 基催化剂,包括平板式、蜂窝式、波纹板式 3 种形式[1-2]。其中,蜂窝式催化剂采用均质整体挤压的方法制造,本体全部为催化剂成分,具有活性高、比表面积大的特点,其在电厂所占比重达 80% 以上[3-4]。燃煤锅炉产生的

收稿日期;2017-04-06;责任编辑;孙淑君 **DOI**:10.13226/j. issn. 1006-6772.2017.05.017

基金项目:冀电调试资助项目(TSS2016-09)

CHEN Chongming, YU Jinxing, CHEN Ersong, et al. Experimental research on NO_x removal by using a commercial honeycomb type SCR catalysts [J]. Clean Coal Technology, 2017, 23(5):88–91.

作者简介: 陈崇明(1983—), 男, 河北石家庄人, 高级工程师, 硕士, 从事燃煤电厂脱硫、脱硝、除尘技术的研究。 E-mail: 15081890569@ 163. com 引用格式: 陈崇明, 郁金星, 陈二松, 等. 商用蜂窝式 SCR 催化剂脱除 NO_x 试验研究[J]. 洁净煤技术, 2017, 23(5): 88-91.

 NO_x 污染物包括 N_2O_xNO 和 NO_2 等多种形态^[5-6]。大部分燃煤电厂烟囱入口的连续在线监测系统 (CEMS) 具备对 NO 进行测试的能力,极少部分电厂能够同时测试 NO 和 NO_2 ,但是没有电厂能够测试 N_2O 。对于执行超净排放标准的机组,研究发现某些类型锅炉,特别是循环流化床锅炉的出口烟气中 NO 和 NO_2 都是不可忽视的烟气污染物^[7-9]。当前对 SCR 催化剂性能方面的研究较多,但是很少考虑 SCR 催化剂对 NO_2 和锅炉燃烧条件控制不合理产生的 N_2O 的脱除影响。本文在脱硝试验装置上研究了反应条件对商用蜂窝式 SCR 催化剂脱除 $NO_x(NO_xO_xNO_2)$ 性能的影响,为电厂脱硝装置的运行及调整提供参考。

1 试 验

1.1 试验装置

商用蜂窝式 SCR 催化剂脱除 NO_x 试验装置如图 1 所示。装置主要由模拟气瓶组、预热器、混合器、催化反应器及烟气分析测试系统组成。模拟烟气采用 NO_x、SO₂、O₂ 和 N₂ 钢瓶气配置,经一级混合器后进入预热器,然后与 NH₃ 在二级混合器混合进入反应器;模拟烟气中的水蒸气通过注射泵将去离子水加入预热器实现。NO_x 钢瓶气为 NO、N₂O 的混合物,NH₃ 钢瓶气纯度为 10%,其余钢瓶气均为纯气。反应器为固定床式,采用三段升温程序控制,可放置 3×3 孔,长度为 30 cm 的催化剂。反应器入出口烟气浓度由 MKS 公司生产的 2030 型多组分烟气分析仪进行在线测量。

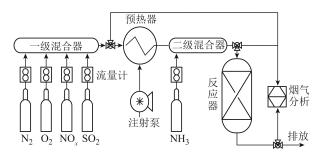


图 1 商用蜂窝式 SCR 催化剂脱除 NOx 试验装置

Fig. 1 Test device for NO_x removal research of commercial honeycomb type SCR catalysts

利用图 1 所示试验装置,测试不同氧量、温度、空速、氨氮摩尔比(氨气浓度与 NO 和 NO₂ 浓度之和的比值)条件下 NO_x 的脱除效率。其中,模拟烟气中 NO_x SO₂ 及水蒸气含量均调整至设计值,分别

为 304×10⁻⁶、1 200×10⁻⁶、6%。

1.2 蜂窝式催化剂理化特性检测及分析

微观结构的分析采用低温吸附原理,测试仪器为 NOVA200E 孔容孔径测试仪;化学成分采用 X 射线荧光光谱分析仪(XRF)进行测试。经测定,蜂窝催化剂的 比表面 积为 50.02 m^2/g ,总孔容 0.24 cm^3/g ,平均孔径为17.82 nm,与大多数催化剂的微观结构参数类似[10-12]。蜂窝催化剂主要成分含量见表 1。可以看出,载体 TiO_2 在催化剂中所占比重最大; WO_3 次之,其主要作是增强催化剂的整体强度;作为促进氨气和 NO_* 反应的 V_2O_5 含量仅为 0.86%;此外还含有部分 SiO_2 、 SO_3 、BaO 和 CaO。

表 1 蜂窝催化剂主要成分含量

Table 1 Concentration of main compositions in

	noneycomb type catalysis					70
TiO ₂	V_2O_5	WO ₃	SiO_2	SO_3	BaO	CaO
77. 64	0. 86	5. 29	3. 70	3. 66	2. 51	2. 40

2 结果及讨论

2.1 氧量的影响

反应器温度 350 °C、空速 3 000 h⁻¹、氨氮摩尔比 1.1 条件下,研究了氧量变化对催化剂脱除 NO_x 的 影响,发现反应器人口 NO、NO₂ 浓度随着氧量不同 而变化。测试了一级混合器出口和反应器人口(喷 氨前后) NO、N₂O、NO₂ 浓度随氧量变化,如图 2 所 示。随着氧量增加,一级混合器出口 NO₂ 体积分数 逐渐升高,NO 体积分数逐渐下降,N₂O 体积分数 无 变化。由于一级混合器出口 NO 和 NO₂ 体积分数 之 和基本恒定,表明 NO₂ 完全来自于 NO 的氧化,且 NO 氧化率随着氧气体积分数的提高逐渐增大,对于燃煤电厂常见的氧量条件(2%~6%),NO 氧化率为 2%~8%。从一级混合器出口和反应器人口 NO、N₂O、NO₂ 浓度变化可以看出,在无催化剂条件下,NO 和 N₂O 与氨气不发生反应,仅有少量 NO₂ 和 氨气发生还原反应。

在催化条件下,N₂O 仍然不会和氨气发生反应; 氧量可以促进 NO 与 NH₃ 的还原反应,但是当氧量 超过 2% 时,其促进作用不会随着氧量的升高而增 大;反应器出口 NO₂ 浓度基本接近 0,这是由于反应 器人口 NO₂ 体积分数相对较低,导致其和氨气在反 应器内部反应较为完全造成的。

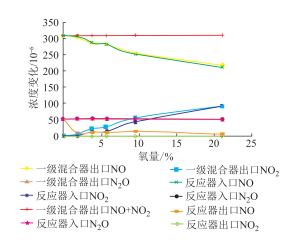
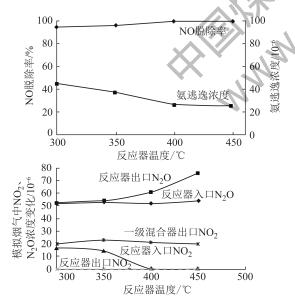


图 2 氧量对 $NO \setminus N_2O \setminus NO_2$ 体积分数的影响 Fig. 2 Effect of oxygen on the concentration of $NO \setminus N_2O$ and NO_2

2.2 温度的影响

空速 3 000 h⁻¹、氨氮摩尔比 1. 1、氧量 4% 条件下,研究了反应器温度对催化剂脱除 NO_* 的影响。不同温度条件下,NO 脱除率和反应器出口逃逸氨变化如图 3 所示。随着温度升高,NO 脱除率逐渐增加,即使温度超过催化剂允许最高连续温度 430 \mathbb{C} ,也未出现效率下降;同时,随着温度的升高,反应器出口氨逃逸浓度逐渐下降。



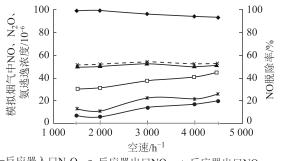

图 3 反应器温度对 NO 脱除和入口、出口 NO_x 体积分数的影响

Fig. 3 Effect of reactor temperature on the NO removal and inlet and outlet concentration of N_2O and NO_2

对一级混合器出口和反应器入出口模拟烟气中 N₂O₃NO₂体积分数进行测试,如图 3 所示。在二级 混合器中,无催化剂作用下,温度越高, NO_2 更易于与氨气发生反应;当温度达到 400 $^{\circ}$ 时,超过 20×10^{-6} 的 NO_2 几乎全部与氨气在非催化条件下发生还原反应。在反应器人口 N_2O 体积分数基本不变的情况下,反应器出口 N_2O 体积分数随着温度升高而逐渐增加。反应器温度 450 $^{\circ}$ 时,关闭了 NO_x 钢瓶,反应器出口 N_2O 体积分数仍达 22×10^{-6} ,表明 N_2O 来源于氨气的氧化。SCR 催化条件下,氨气氧化率随着温度升高而增大,反应器温度 $300 \sim 450$ $^{\circ}$ 、氨气氧化率为 $0.17\% \sim 6.77\%$ 。因此,应控制 SCR 人口烟气温度,避免 N_2O 的生成。

2.3 空速的影响

氨氮摩尔比 1.1、氧量 4%、温度 350 ℃条件下,研究了空速对催化剂脱除 NO_x 的影响,如图 4 所示。随着气量增加,一级混合器出口 NO_2 浓度有增大的趋势,但是对于 NO_2 和氨在二级混合器中的非催化还原反应没有特别影响;试验空速范围内, N_2O 均不会与氨气发生反应;空速由 1 500 h^{-1} 升到 2 000 h^{-1} ,气体传质作用加强,NO 脱除率略有升高;空速由 2 000 h^{-1} 升高到 4 500 h^{-1} ,因烟气停留时间下降的影响更加显著,导致 NO 脱除率下降,氨逃逸浓度明显升高;但是即使空速达到 4 500 h^{-1} ,NO 脱除率仍然高达 92%,表明该商用催化剂活性相对稳定。

→ 反应器入口N₂O → 反应器出口NO₂ → 反应器出口NO₂ - → 反应器出口N₂O → 反应器入口NO₂ → NO脱除率 - □ 氨逃逸

图 4 空速对反应器入口、出口 NO、N₂O、NO₂ 体积分数的影响

Fig. 4 Effect of space velocity on the reactor inlet and outlet concentration of NO₃N₂O and NO₂

2.4 氨氮摩尔比的影响

空速 $3~000~h^{-1}$ 、氧量 4%、温度 350~%条件下,研究了氨氮摩尔比变化对催化剂脱除 NO_x 的影响,如图 5~所示。随着氨氮摩尔比升高,反应器出口 NO体积分数逐渐降低,NO 脱除率逐渐增大,但是即使

氨氮摩尔比超过 1.0, NO 脱除率最高不超过 96%;由于反应器人口 NO_2 浓度仅为 14×10^{-6} ,在较低氨量条件下,反应器出口 NO_2 体积分数即趋近于 0;在试验氨氮摩尔比条件下,反应器出口 N_2O 体积分数无明显变化,即 N_2O 不会与氨气发生反应。然而,喷氨量增加在促进 NO 脱除的同时,也会造成氨逃逸升高。当氨氮摩尔比达 0.93 时,反应器出口氨浓度达到 7×10^{-6} ,超过了 3×10^{-6} 的设计值。

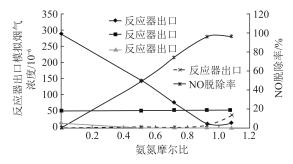


图 5 氨氮摩尔比对脱硝效率和反应器出口烟气浓度的影响 Fig. 5 Effect of mole ratio of NH₃/NO_x on the denitration efficiency and outlet concentration of simulated flue gas

3 结 论

- 1) 仅有少量 NO₂ 可以和氨气在无催化剂条件下发生还原反应; 氧量可以促进 NO 氧化,且在低于2%时,可以明显促进 NO 和氨的催化还原反应。
- 2) NO 脱除率随着烟气温度升高而增大,但是温度过高会促进氨气氧化为 N₂O,产生新的污染物;空速增加会促进气体传质的同时降低停留时间,导致 NO 脱除率先升高后降低;随着氨氮摩尔比的增加,NO 脱除率逐渐增大,但氨逃逸会逐渐升高。
- 3)由于 SCR 催化剂不会促进 N_2O 与氨气的还原反应,电厂应优化控制煤炭燃烧参数避免 N_2O 的生成,以真正实现 NO_x 的超净排放。

参考文献(References):

- [1] 赵瑞,刘毅,廖海燕,等. 火电厂脱硝催化剂寿命管理现状及发展趋势[J]. 洁净煤技术,2015,21(2):134-138.

 ZHAO Rui, LIU Yi, LIAO Haiyan, et al. Status and development tendency of deniration catalyst life management in thermal power plant[J]. Clean Coal Technology,2015,21(2):134-138.
- [2] 孟小然,于艳科,陈进生,等. 平板式 SCR 催化剂的性能检测 [J]. 中国电力,2014,47(12):144-148.

 MENG Xiaoran, YU Yanke, CHEN Jinsheng, et al. Performance testing of plate SCR catalysts[J]. Electric Power,2014,47(12): 144-148.
- [3] 席文昌,刘清才,魏春梅.蜂窝式脱硝催化剂在燃煤电厂中的

- 应用研究[J]. 材料导报,2008,22(7):282-284.
- XI Wenchang, LIU Qingcai, WEI Chunmei. Application research of honeycomb deNO_x catalyst in coal fired power plant [J]. Material review, 2008, 22(7):282–284.
- [4] 黄锐,席文昌,陈付国. 蜂窝式催化剂在选择性催化还原法烟气脱硝中的应用[J]. 华电技术,2010,32(11):79-81. HUANG Rui, XI Wenchang, CHEN Fuguo. Application of honeycomb bed catalyst in flue gas denitration using selected catalytic reduction method[J]. Huadian Technology,2010,32(11):79-81.
- [5] 高洪培,刘家磊.循环流化床燃烧中 NO_x 及 SO₂ 排放特性试验研究[J]. 洁净煤技术,2002,8(4):32-34.
 GAO Hongpei, LIU Jialei. Emission specific property experiment study of NO_x and SO₂ in circulating fluidized bed combustion[J]. Clean Coal Technology,2002,8(4):32-34.
- [6] 杨冬,徐鸿,陈海平. 燃煤循环流化床锅炉 N₂O 排放影响因素 分析[J]. 洁净煤技术,2009,15(6):63-67. YANG Dong,XU Hong,CHEN Haiping. Analysis of the influence factors on N₂O emission in circulating fluidized bed boiler using coal[J]. Clean Coal Technology,2009,15(6):63-67.
- [7] 王勤辉,骆仲泱,李绚天,等.循环流化床锅炉氮氧化物的生成与分解模型[J]. 燃料化学学报,1998,26(2):108-113.
 WANG Qinhui, LUO Zhongyang, LI Xuantian, et al. Modeling of NO and N₂O formation and decomposition in circulating fluidized bed boiler[J]. Journal of Fuel Chemistry and Technology,1998,26 (2):108-113.
- [8] 殷立宝,阎维平,叶学民,等. CFB 锅炉燃烧中 N₂O 的生成机理与减排控制[J]. 锅炉制造,2004(1):14-17.

 YIN Libao, YAN Weiping, YE Xuemin, et al. Formation mechanism of N₂O in CFB boiler and some measures of decomposing N₂O

 [J]. Boiler Manufacturing,2004(1):14-17.
- [9] 柳静献,张海燕,常德强,等. NO₂ 对烟气除尘用聚苯硫醚滤料机械性能的影响[J]. 东北大学学报,2010,31(7):1030-1034. LIU Jingxian, ZHANG Haiyan, CHANG Deqiang, et al. Effect of NO₂ on mechanism properties of polyphenylene sulfide filter for smoke dust removal[J]. Journal of Northeastern University,2010, 31(7):1030-1034.
- [10] 陈崇明,侯海萍,邹斯诣,等. 某电厂 SCR 烟气脱硝系统故障诊断[J]. 中国电力,2016,49(5):63-66.

 CHEN Chongming, HOU Haiping, ZOU Siyi, et al. Fault Diagnosis of the SCR System in a Power Plant[J]. Electric Powe,2016,49(5):63-66.
- [11] 晏敏,赵凯,朱跃. 燃煤电厂运行中脱硝催化剂的性能检测评价与分析[J]. 中国电力,2016,49(7):168-172.
 YAN Min,ZHAO Kai,ZHU Yue. Performance assessment and analysis of denitration catalyst in coal-fired power plant[J]. Electric Power,2016,49(7):168-172.
- [12] 张发捷,张强,程广文,等. SCR 脱硝催化剂再生技术试验研究[J]. 热力发电,2015,44(3):34-40.
 ZHANG Fajie,ZHANG Qiang,CHENG Guangwen, et al. Regeneration technology of SCR catalysts; an example study[J]. Thermo Power Generation,2015,44(3):34-40.