转化利用

炭分子筛的表征

车永芳¹ 张进华¹ 李小亮¹ 汪婧娟²

(1. 煤炭科学研究总院 北京煤化工研究分院 北京 100013; 2. 天地科技股份有限公司 北京中煤矿山工程有限公司 北京 100013)

摘要: 炭分子筛是浓缩煤层气变压吸附机组的关键材料,性能的好坏直接影响变压吸附 机组的性能。通过在 77 K 下 N_2 的吸脱附等温线对炭分子筛的比表面积、孔径分布进行测定, 通过吸附试验对炭分子筛吸附 N_2 O_2 CO_2 CH_4 H_2 的能力及 N_2 和 CH_4 在炭分子筛上的吸附 速度进行比较 以确定不同炭分子筛分离气体的能力。

关键词: 炭分子筛: 吸附试验: 动力学吸附

文章编号:1006-6772(2011)05-0048-04 文献标识码: A 中图分类号: TQ424.1; TD849

炭分子筛(Carbon Molecular Sieve, CMS) 是 20 世纪70年代发展起来的新型炭质吸附剂^[1],主要由 1 nm 以下呈狭缝状的微孔和少量大孔组成,其孔径 分布较窄,一般在0.3~1.0 nm 左右。由于 CMS 具 有独特的孔隙结构,并且其化学稳定性高、耐高温、 耐酸碱,因而作为吸附剂广泛用于环保、医药、食 品、化工等领域。目前以 CMS 为吸附剂应用于变压 吸附(PSA)的研究倍受关注^[2-3]。为全面了解炭分 子筛性能 除了进行常规的比表面积和孔径分布测 定外,对炭分子筛吸附 N₂,CH₄,O₂,CO₂,H₂的能力 进行比较,以确定炭分子筛对气体的分离能力[4-5]。 这些参数将为 CMS 的制备提供重要的信息。

通过对 2 种自制的炭分子筛 CMS-1 和 CMS-2 进行表征 初步探索炭分子筛的评价方法。

1 炭分子筛孔结构的表征

应用美国康塔仪器公司的 Autosorb-1 型全自 动物理化学吸附仪在 77 K 条件下测定 $N_{2}(99.99\%)$ 在炭分子筛样品上的吸附/脱附等温线。样品 CMS-1,

CMS-2在77 K 下对 N₂的吸脱附等温线如图 1 所 示。吸附分析前 样品在 573 K 条件下脱气 4 h。利 用 N₂ 吸附等温线解析样品的孔隙参数 $U = 0.162 \text{ nm}^2$ 为氮分子横截面积 利用 BET 方程计算各样品的比 表面积,并利用 DFT(Density Function Theory) 法计 算孔容。

炭分子筛低温 N。吸脱附等温线 图 1

由图1可见 吸附线与脱附线没有闭合回线 说 明毛细孔形状和大小变化范围很大。总体来看 CMS-2 样品的孔隙要比 CMS-1 的大些; CMS-1 的 脱附效果没有 CMS-2 的好。

收稿日期:2011-05-16	责任编辑: 孙淑君
基金项目:十二五重大专口	页(2011ZX05041004)
作者简介: 车永芳(1987—) 女 山西吕梁人 在读硕士研究生 从事煤基炭材料研究工作

转化利用

表1为炭分子筛样品的孔隙参数。由表1可 知 2 种样品中微孔在其孔隙结构中占多数。CMS-2 微孔孔容大于 CMS-1 微孔孔容,通过计算可得 CMS-1 微孔孔容占总孔容的 81.15% CMS-2 微孔 孔容占总孔容的 92.14%。

样品	平均孔 径/nm	比表面	积/(m ² • g ⁻¹)	孔容/(mL•g ⁻¹)		
		总孔	微孔(<2 nm)	总孔	微孔(<2 nm)	
CMS-1	2.11	252.48	236.88	0.1146	0.0930	
CMS-2	1.92	350.62	341.75	0. 1451	0.1337	

表1 炭分子筛样品的孔隙参数

按照 DFT 基于炭分子筛样品在 77 K 条件下 N₂的吸附等温线,可获得2种炭分子筛样品在 0.35~6 nm 范围内的孔径分布情况 如图 2 所示。

图 2 炭分子筛的 DFT 微分孔容孔径分布

由图 2 可知 炭分子筛孔径主要分布在 0.35. 2 nm,可见样品主要以微孔为主,同时发现 CMS-2 微孔孔容大于 CMS-1 的微孔孔容。这可能是因为 在制备 CMS-2 的过程中, 苯的沉积量高于 CMS-1 的沉积量 苯裂解产生的固定碳更好地将大孔调小, 从而产生更多的微孔 以致微孔总孔容增加。在3 nm 附近 CMS-1 的孔容大于 CMS-2, CMS-1 的中孔含 量偏高。

炭分子筛的表面形貌通过扫描电镜获得 图 3 是

CMS-1,CMS-2表面放大 10⁴ 倍的扫描电镜图,由 图 3 可见煤基炭分子筛表面凹凸不平,呈现比较杂 乱的状态。CMS-1 孔径较大,大孔较多,许多小孔 已被堵死。CMS-2 几乎无大孔,通过炭沉积,苯裂 解产生的固定碳堆积在大孔周围,使孔径逐渐减小, 主要为微孔。

中国科技核心期刊 全国中文核心期刊 矿业类核心期刊

图 3 炭分子筛的扫描电镜图

2 平衡吸附

用高压容量法测定吸附剂吸附性能。将处理好 的干燥吸附剂装入吸附管中 抽真空脱气 测定吸附 管的剩余体积 向吸附管中充入或放出一定量的气 体 使吸附管内压力达到平衡 部分气体被吸附 部 分气体仍以游离状态处于剩余体积之中,已知充入 (放出)的气体量,扣除剩余游离气体量,即为吸附 量。重复这样的测定,得到各压力段平衡压力与吸 附量 连接起来即为吸附等温线。当压力由低到高 采取充入气体方式测试时,得到吸附等温线;反之, 压力由高到低采取放出气体方式测试时,得到解吸 等温线。

将试验温度设定在 30 ℃ 样品 CMS-1 ,CMS-2 分别对 N, O, CO, CH, H, 进行等温吸附, 通过对 试验数据的汇总分析 得出各种气体的吸附等温线。 如图4所示。

图4显示了不同压力下样品对 N₂,O₂,CO₂, CH₄, H₂ 的吸附 吸附量由大到小为: CO₂>CH₄>O₂> $N_2>H_2$; CO₂ 的吸附量最大,其原因可能与 N₂,CO₂, CH₄ 和吸附剂孔隙之间的特殊相互作用有关。参照

车永芳等:炭分子筛的表征

49

Steele10-4-3 势能函数近似计算出的 N_2 , CO_2 , CH_4 在石墨狭缝孔中的相互作用势能曲线表明 ,在孔径 小于 0.36 nm 和大于 0.46 nm 的孔中 , CO_2 的吸附 能大于 CH_4 ; 在所有尺寸的孔中 CO_2 的吸附能都比 N_2 大得多。所有气体在半径接近其动力学直径的 孔中具有最大的吸附能 ,说明气体优先被吸附进小 孔。按石墨狭缝形微孔模型 ,孔径小于 0.29 nm 的 孔将禁止 N_2 , CO_2 , CH_4 的进入; CO_2 优先进入孔径 小于 0. 31 nm 的孔中; 当孔径大于 0. 31 nm 时 ,所有 气体都能进入孔内。 H_2 由于分子直径太小 极易脱 附 故吸附量很小^[6]。

通过对吸附等温线的分析与计算列出样品 CMS-1 与 CMS-2 对 N₂,O₂,CO₂,CH₄和 H₂的吸附 量以及分离比,见表 2。

					N ₂	N ₂ O ₂		CH ₄		CO ₂	
样 品	吸附温 度/℃	堆比重/ (g•mL ⁻¹)	耐磨强 度/%	压力/ MPa	吸附量/ (mL•g ⁻¹)	吸附量 / (mL・g ⁻¹)	分离比	吸附量 / (mL•g ⁻¹)	分离比	吸附量/ (mL•g ⁻¹)	分离比
CMS-1			98. 0	0.1	0.35	0.48	1.4	2.63	7.5	6.95	19.9
				0.2	0.66	0.90	1,4	4. 63	7.1	12.33	18.8
				0.3	0.92	1.24	1.3	6. 10	6.6	16.34	17.7
				0.4	1.15	1.54	1.3	7.17	6.2	19.24	16.7
	30	0.68		0.5	1.35	1, 79	1.3	7.94	5.9	21.23	15.7
				0.6	1, 53	2.02	1.3	8. 51	5.6	22. 57	14.8
				0.7	1.68	2.22	1. 3	9.01	5.4	23.46	14.0
				0.8	1.82	2. 41	1.3	9.55	5.3	24. 15	13.3
				0.9	1.94	2. 61	1.3	10. 23	5.3	24. 87	12.8
CMS-2		0. 68		0.1	2. 59	2. 58	1.00	13.9	5.35	16.74	6.46
	30			0.2	4.91	4.95	1.01	20.7	4.22	26.41	5.38
			\propto	0.3	6.81	6.98	1.02	24.6	3.62	31.18	4.58
				0.4	8. 39	8.74	1.04	26.9	3.20	33. 12	3.95
			98.5	0.5	9.72	10.29	1.06	28.3	2.91	33. 81	3.48
				0.6	10.87	11.67	1.07	29.5	2.71	34. 34	3.16
				0.7	11.89	12.92	1.09	30.8	2.59	35.35	2.97
				0.8	12.81	14.06	1.10	32.1	2.51	36.96	2.89
				0.9	13.66	15.09	1.10	33.3	2.44	38.84	2.84

表 2 O₂,CO₂,CH₄,H₂ 与 N₂的分离比

由表 2 可以看出,样品 CMS-1 的分离比比 CMS-2大很多,但都能够满足气体分离要求; CMS-2 的吸附量很高,在实际应用中能够节省大量的炭分 子筛,综合比较 CMS-2 样品用于分离气体效果 更优。

3 动力学吸附

用高压热重分析仪进行样品的数据测试。试验前先对样品进行处理将样品装入炉子中在170℃ 下用 He 气吹扫 3 h,然后抽真空脱气 0.27 Pa。此 时计算出装入吸附栏中处理好的干燥炭分子筛的 质量 待温度稳定在 30 °C ,压力稳定在 0.1 MPa 时 开始吸附试验。通入吸附气体直至最后吸附平衡。 仪器可以在线及时连续地记录炭分子筛样品对气 体的吸附情况,可计算出任意时段的吸附量。切换 不同的吸附气体,重复上述测定,得到不同炭分子 筛样品对不同气体的吸附动力学情况。

按上述方法 ,对 2 个炭分子筛样品进行了 N_2 和 CH_4 的吸附试验 图 5 为 N_2 和 CH_4 纯组分在 2 个炭 分子筛样品上的吸附动力学曲线。

由图 5 可以发现: 在吸附初期, N_2 在 CMS-1 和 CMS-2 上的扩散速率比 CH₄ 大, 但差值不大, 明显 不能很好应用于 PSA 分离 CH₄/N₂; 在吸附后期, N_2 的吸附达到平衡, CH₄ 的吸附量还在增加, CH₄ 在 CMS-1 上的吸附饱和量为 14. 587 mg/g, N_2 在 CMS-1 上的吸附饱和量为 8. 446 mg/g, 故可考虑利用 CMS -1 的平衡吸附分离 CH₄/N₂。 CH₄ 在 CMS-2 上的 吸附饱和量为 19. 380 mg/g, N_2 在 CMS-2 上的吸附 饱和量为 8. 545 mg/g 其吸附饱和量差值较 CMS-1 更大, 故可利用 CMS-2 的平衡吸附去分离 CH₄/N₂。

4 结 论

用低温 N_2 吸附来测量炭分子筛的比表面积、 孔容等结果都偏小,由于 N_2 分子偏大并不能很准 确地表征炭分子筛;用不同的气体分子作为指针分 子能够更直观、准确地表征炭分子筛的孔结构。自 制的炭分子筛虽分离系数可以满足分离要求,但对 CH_4 吸附量还不是很大;同时对 CH_4 的吸附速率与 对 N_2 的吸附速率相差极小,基本不能应用于 PSA 分离 CH_4/N_2 ; 今后应努力提高 CH_4 在炭分子筛上

的平衡吸附量和吸附速率。

参考文献:

- Sherman , J D. Syntheticzeolites and other microporous oxide molecularsieves [J]. Proceeding of the National Academy of Sciences of the United States of America , 1999 96(7): 3471-3478.
- [2] Grande A. Grande Simone Carenati Franciso A. Dasilca , et al. Carbon molecular sieves for hydrocarbonseparations byadsorption [J]. Industrial and Engineering Chemistry Research 2005 44(18):7218-7227.
- [3] 刘克万 ,奉敏 ,鲜学福. 变压吸附浓缩甲烷/氮气中甲烷的研究进展[J]. 现代化工 2007 27(12):15-20.
- [4] 车永芳 涨进华 ,梁大明 ,等. 炭分子筛表征现状 [J].洁净煤技术 2011 ,17(2): 39-42.
- [5] 张进华,车永芳,李兰廷,等.煤基碳分子筛的制备及 CH₄/N₂分离性能研究[J].洁净煤技术 2011,17(2): 64-67.
- [6] 翟路锁.炭分子筛的气体吸附试验[J].煤矿安全, 2004,35(2):16-18.

Characterization of carbon molecular sieve

CHE Yong-fang¹ ZHANG Jin-hua¹ LI Xiao-liang¹ ,WANG Jing-juan²

(1. Beijing Research Institute of Coal Chemistry China Coal Research Institute Beijing 100013 China;

2. Tiandi Science and Technology Co. Ltd. China Coal Technology and Engineering Group Corp. Beijing 100013 China)

Abstract: Carbon molecular sieve is the critical material of the enrichment CBM variable pressure absorption units , whose properties directly determine the function of the variable pressure absorption units. The specific surface area and pore size distribution of carbon molecular sieve is investigated according to analyzing N₂ adsorption and desorption isotherms at 77 K. Compare the adsorption ability of carbon molecular sieve for N₂ ,O₂ ,CH₄ ,H₂ according to adsorption experiments. Adsorption rates of N₂ and CH₄ are analyzed ,which make it easy for determining the separation ability of different carbon molecular sieve for gas.

Key words: carbon molecular sieves (CMS); adsorption test; kinetic adsorption