高级检索

    硅铝比调控Cu-ZSM-5催化甲烷高效制甲醇作用机制

    Mechanism of Si/Al ratio tuning in Cu-ZSM-5-catalyzed highly efficient methane-to-methanol conversion

    • 摘要: 为在温和条件下高效资源化利用煤层气中甲烷,系统探究了硅铝物质的量比(简称“硅铝比”)对Cu-ZSM-5催化剂结构及其催化甲烷选择性氧化制甲醇性能的调控机制。通过湿浸渍法制备了不同硅铝比的Cu-ZSM-5-X(CZX)催化剂系列,并采用X射线衍射(XRD)、N2吸附–脱附、X射线光电子能谱(XPS)、电子顺磁共振(EPR)等一系列表征手段,对催化剂理化性质进行深入解析。研究结果揭示,硅铝比是影响铜物种价态分布的关键因素,其中CZ50(实测硅铝比为44.58)催化剂富集了最高比例的Cu+活性位点,且铜物种在分子筛载体上呈高度分散状态。在70℃、3 MPa CH4、以0.5 mol/L H2O2为氧化剂的反应条件下,CZ50表现出最优的催化性能,甲醇产率高达46.46 mmol/(g·h),选择性达到86.22%,其性能显著优于其他硅铝比催化剂。机理研究表明,Cu+位点能高效活化H2O2产生·OH自由基,进而攻击甲烷分子生成关键的·CH3中间体。结合原位红外光谱与自由基淬灭试验证明CZ50催化剂因其独特的电子结构能有效稳定该甲基中间体,从而抑制其深度氧化为CO2等副产物,最终实现甲醇的高选择性合成。通过精准调控分子筛载体的“硅铝比”这一关键参数,揭示了其对活性中心铜物种价态的决定性作用,并成功富集了高效稳定的Cu+活性位点,从而在温和条件下实现了甲烷到甲醇的高效、高选择性转化。所优化的CZ50催化剂在温和条件下实现了远超同类文献报道的甲醇产率,这标志着在实现甲烷直接转化这一“催化圣杯”过程的实用化道路上迈出了关键一步,为开发高效、稳定的非贵金属甲烷转化催化剂提供了新的设计思路和坚实的理论依据。

       

      Abstract: The Si/Al ratio of Cu-ZSM-5 zeolites is systematically investigated to regulate the catalyst structure and performance in the selective oxidation of methane to methanol under mild conditions. A series of Cu-ZSM-5-X(CZX) catalysts with varying Si/Al ratios are prepared via wet impregnation. Their physicochemical properties are characterized in detail using techniques such as X-Ray Diffraction (XRD), N2 physisorption, X-Ray Photoelectron Spectroscopy (XPS), and Electron Paramagnetic Resonance (EPR). Results reveal that the Si/Al ratio governs the distribution of copper valence states. Among the series, CZ50 (measured Si/Al = 44.58) possesses the highest proportion of active Cu+ sites, with copper being highly dispersed on the zeolite support. Under reaction conditions of 70℃, 3 MPa CH4, and 0.5 M H2O2 as the oxidant, CZ50 exhibits optimal catalytic performance, achieving a methanol productivity of 46.46 mmol·gcat−1·h−1with 86.22% selectivity. This performance significantly surpasses that of catalysts with other Si/Al ratios. Mechanistic studies indicate that Cu+ sites efficiently activate H2O2 to generate ·OH radicals, which subsequently attack methane to form the key ·CH3 intermediate. In situ IR spectroscopy combined with radical-quenching experiments confirms that the distinct electronic structure of CZ50 effectively stabilizes this methyl intermediate, thereby inhibiting deep oxidation to CO2. Through precise tuning of the zeolite Si/Al ratio, the valence state of copper active centers is modulated to favor the formation of highly efficient and stable Cu+ sites. This strategy achieves highly productive and selective conversion of methane to methanol under mild conditions. The optimized CZ50 catalyst demonstrates methanol yields that exceed most reported systems, representing a key advance toward the practical realization of direct methane conversion and providing a novel design principle and a solid theoretical foundation for developing efficient, stable non-precious-metal catalysts for methane valorization.

       

    /

    返回文章
    返回