高级检索

    CuZnAl-xZr催化剂在CO2加氢制甲醇反应中Zr对Cu/ZnO界面形成的调控作用

    The regulatory effect of Zr on the formation of Cu/ZnO interface in CuZnAl-xZr catalysts during the CO2 hydrogenation to methanol reaction

    • 摘要: 二氧化碳(CO2)不仅是导致温室效应的主要气体之一,同时也是一种储量丰富的碳资源。通过催化转化技术将CO2转化为甲醇,不仅能够有效缓解其对气候环境的负面影响,还能为清洁能源的开发与利用提供重要途径。然而,催化剂的组成和结构直接决定了反应活性位点的数量及其分布,从而对催化反应的效率和选择性产生显著影响。为进一步提高CuZnAl工业催化剂在CO2加氢制甲醇反应中的活性,采用表面浸渍法将Zr4+引入CuZnAl催化剂体系,成功制备了不同Zr负载量的CuZnAl-xZr催化剂,系统探究了Zr对Cu/ZnO界面形成的调控作用。通过HRTEM、XPS、N2O滴定、ICP-OES及H2-TPR测试对催化剂结构及表面电子状态进行表征。结果表明,在3 MPa、φ(H2):φ(CO2) = 4、230 °C、40000 mL/(gcat·h)的反应条件下,CZA-2Zr催化剂的甲醇生成速率最高,达到25.4 mmol/(gcat·h),相较于未改性的CZA催化剂提升了23.9%。各催化剂的表观活化能未发生显著变化,表明反应的路径以及中间产物的吸附能未发生明显变化,甲醇的合成活性取决于催化剂表面参与反应的活性位点数量。随着Zr含量的增加,不同CZA-xZr催化剂表面Cu物相的电子结合能保持不变,表明Cu与Zr之间未发生电子间的相互作用;然而,由于Zn与Zr之间的相互作用,Zr的电子逐渐向Zn转移。值得注意的是,这一电子转移现象在催化剂还原处理前即已存在,表明Zn与Zr在煅烧过程中已发生相互作用。通过HRTEM结果可清晰地观察到催化剂中的金属-氧化物界面,并发现ZnO粒径呈现先减小后增大的变化趋势,而由于ZnO的分散作用,Cu0的分散度与之呈负相关关系,同时这一趋势进一步得到了H2-TPR实验的验证。综上所述,CZA-2Zr催化剂因具有最多的Cu/ZnO界面而表现出最高的反应物转化率,其中ZnO对于Cu0的分散起到了关键作用。

       

      Abstract: Carbon dioxide (CO2) is not only one of the primary greenhouse gases but also an abundant carbon resource. The catalytic conversion of CO2 into methanol offers a promising approach to mitigate its adverse environmental impacts and provides a significant pathway for the development and utilization of clean energy.However, the composition and structure of catalysts directly determine the number and distribution of active sites, thereby significantly influencing the efficiency and selectivity of catalytic reactions. To enhance the activity of CuZnAl industrial catalysts in CO2 hydrogenation to methanol, Zr4+ was introduced into the CuZnAl catalyst system via surface impregnation, successfully preparing CuZnAl-xZr catalysts with varying Zr loadings. The role of Zr in regulating the formation of Cu/ZnO interfaces was systematically investigated. The catalyst structure and surface electronic states were characterized using HRTEM, XPS, N2O titration, ICP-OES, and H2-TPR. Results indicate that under reaction conditions of 3 MPa, φ(H2):φ(CO2) = 4, 230 °C, and 40000 mL/(gcat·h), the CZA-2Zr catalyst exhibits the highest methanol production rate of 25.4 mmol/(gcat·h), representing a 23.9% increase compared to the unmodified CZA catalyst. The apparent activation energy of the catalysts remains unchanged, suggesting that the reaction pathway and adsorption energy of intermediates are not significantly altered, and the methanol synthesis activity is determined by the number of active sites on the catalyst surface. As the Zr content increases, the electronic binding energy of the Cu phase on the surface of different CZA-xZr catalysts remains constant, indicating no electronic interaction between Cu and Zr. However, due to the interaction between Zn and Zr, electrons gradually transfer from Zr to Zn. Notably, this electron transfer phenomenon exists even before the catalyst reduction treatment, indicating that Zn and Zr interact during the calcination process. HRTEM results clearly reveal the metal-oxide interfaces in the catalysts and show that the ZnO particle size initially decreases and then increases. The dispersion of Cu0 is negatively correlated with ZnO dispersion, a trend further confirmed by H2-TPR experiments. In conclusion, the CZA-2Zr catalyst exhibits the highest reactant conversion rate due to the highest number of Cu/ZnO interfaces, with ZnO playing a crucial role in the dispersion of Cu0.

       

    /

    返回文章
    返回