高级检索

    MOFs金属衍生物催化剂的制备及其在CO2加氢热催化合成C1分子的研究进展

    Preparation of MOF-Derived Metal Catalysts and Their Advances in Thermo-catalytic Hydrogenation of CO2 to Synthesize C1 Molecules

    • 摘要: 近年来,随着全球气候变化和能源危机的不断加剧,二氧化碳资源化利用已成为当前研究的热点。利用绿氢活化二氧化碳制燃料/化学品是解决氢能生产与CO2资源化利用的重要途径之一,在催化剂的作用下,可实现甲烷、甲醇和一氧化碳等重要C1分子的制备。金属有机框架(MOFs)金属衍生物得益于具有多活性位点、较高的活性位点接触面积、可调节孔结构、规则的孔道结构、表面优异的酸碱性能以及高效的金属-载体相互作用,在CO2加氢热催化合成C1分子方面展现出巨大的潜力。论文首先综述了MOFs金属衍生物催化剂常见的制备方法,表明通过化学修饰或结构改造MOFs,可以显著提升其性能,在催化领域具有广泛的应用前景;然后详细介绍了基于该催化剂在CO2加氢合成C1分子方面的研究进展,说明MOFs金属衍生物催化剂在控制金属纳米粒子的尺寸和分散性、增强金属-氧化物界面活性位点和防聚集复合结构的优点,对于提升CO2加氢催化性能和增强催化剂热稳定性的应用潜力;最后探讨了CO2加氢热催化生成甲烷、甲醇和一氧化碳的反应路径,指出了目前MOFs金属衍生物作为催化剂在催化效率、稳定性方面存在的挑战,并对未来的研究方向进行了展望。

       

      Abstract: In recent years, the escalating global climate change and energy crisis have intensified research into the utilization of carbon dioxide. The activation of CO2 using green hydrogen to produce fuels and chemicals is a pivotal approach to address both hydrogen production and CO2 utilization. Through catalysis, this process can yield essential C1 molecules such as methane, methanol, and carbon monoxide. Metal-organic frameworks (MOFs) -derived metal metalloids, due to their multiple active sites, high active site surface area, tunable pore structures, regular channels, superior surface acid-base properties, and efficient metal-support interactions, exhibit significant potential in the thermo-catalytic hydrogenation of CO2 to C1 molecules. This paper first reviews the common preparation methods of MOF-derived metal catalysts, demonstrating that chemical modification or structural transformation of MOFs can substantially enhance their performance, presenting broad application prospects in catalysis. Then, it provides a detailed account of the research progress in the hydrogenation of CO2 to synthesize C1 molecules using these catalysts. It illustrates how MOF-derived metal catalysts offer advantages in controlling the size and dispersion of metal nanoparticles, enhancing the activity of metal-oxide interface sites, and preventing aggregation in composite structures. These factors contribute to improved catalytic performance and thermal stability in CO2 hydrogenation. Finally, the paper discusses the reaction pathways for the thermos-catalytic formation of methane, methanol, and carbon monoxide from CO2, highlighting current challenges in catalytic efficiency and stability of MOF-derived metal catalysts, and offers an outlook on future research directions.

       

    /

    返回文章
    返回