焦炉烟气活性炭法多污染物协同控制工业化试验研究Industrial experimental study on the multi-pollutant collaborative control with activated carbon for coke oven flue gas
王斌;李玉然;刘连继;陈鹏;郭俊祥;林玉婷;朱廷钰;
WANG Bin;LI Yuran;LIU Lianji;CHEN Peng;GUO Junxiang;LIN Yuting;ZHU Tingyu;Beijing Engineering Research Center of Process Pollution Control,National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology,Institute of Process Engineering,Chinese Academy of Sciences;Tangshan Iron & Steel Group Co.,Ltd.;
摘要(Abstract):
目前我国大气污染形势依然严峻,活性炭法烟气多污染物协同控制技术可同时脱除SO_2、NO_x、H_2S等多种污染物,不消耗水,无二次污染,在国内已应用于钢铁烧结烟气、焦化焦炉烟气等,但其效率有待提高。焦化行业焦炉烟气低硫高氮、多污染物共存的排放特征,对活性炭法的脱硝效率及多污染物脱除效果提出了更高要求。为了探究提高焦炉烟气净化效率的因素,建设了焦炉烟气活性炭法多污染物协同控制工业化试验平台,处理烟气量33 000 Nm~3/h。通过调控活性炭移动速率和喷氨量,优化了焦炉烟气净化效率,分析了移动过程对活性炭物理性能的影响、再生后活性炭性质的变化和活性炭的碳消耗。结果表明,活性炭法多污染物协同控制技术的脱硫效率超过99%,脱硝效率达到80%,各排放指标满足特别排放限值(NO_x浓度≤150 mg/Nm~3、SO_2浓度≤30 mg/Nm~3、颗粒物浓度≤15 mg/Nm~3)要求。移动过程使活性炭的耐压强度下降33%~55%,尤其是直径较小的活性炭,耐磨强度有所下降,但降幅较小,这两项参数的下降会导致活性炭损耗量增加。再生后元素S的回收率达90%,吸附后(再生前)活性炭的比表面积相比新鲜活性炭下降了约20%。活性炭物理碳磨损取主要决于活性炭的移动速率,化学碳消耗来自官能团的分解,活性炭的年损耗量约为初装量的10.7%。
Now the situation of air pollution in China is still serious.The multi-pollutant collaborative control with activated carbons can simultaneously remove multi-pollutant,such as SO_2,NO_x and H_2S without water consumption and secondary pollution.It has been used in the flue gas purification of iron-steel sintering and coke oven et al,but the purification efficiency needs to be improved.In the coking industry,the activated carbon technology demands a higher denitrification efficiency and effectively capturing multiple pollutants for the coke oven flue gas with the emission characteristics of low sulfur,high nitrogen and multi-pollutant coexisting.In order to explore the factors to improve the efficiency of coke oven flue gas purification,the industrial test platform was built for multi-pollutant collaborative control with activated carbon for coke oven flue gas purification.The flue gas flow rate was 33 000 Nm~3/h. The moving speed of activated carbon and ammonia injection quantity were adjusted to investigate and optimize the flue gas purification efficiency. The effect of moving process on physical properties of activated carbon,properties of activated carbon after regeneration and carbon consumption were analyzed.The results indicate that the desulfurization efficiency and denitrification efficiency of the multi-pollutant collaborative control technology with activated carbon are more than 99% and 80%,respectively.The emission indexes meets the special emission standards( NO_x≤150 mg/Nm~3,SO_2≤30 mg/Nm~3,PM≤15 mg/Nm~3).The compressive strength of activated carbon obviously decreases by 33%-55% during the moving process,especially for the smaller diameter activated carbon,while the abrasion resistance decreases slightly,but the decrease range is small.The decrease of these two parameters will increase the consumption of activated carbon.The recovery rate of elemental sulfur in the regeneration process is up to 90%,and the specific surface area of activated carbon after adsorption( before regeneration) is approximately20 percent lower than fresh activated carbon.The physical carbon abrasion of activated carbon mainly depends on the moving speed,and the chemical carbon consumption depends on decomposition of the functional groups.The total carbon consumption of activated carbon is approximately 10.7 percent per year of the first loading capacity.
关键词(KeyWords):
活性炭;脱硫脱硝;焦炉烟气;多污染物协同控制
activated carbon;desulfurization and denitrification;coke oven flue gas;multi-pollutant collaborative control
基金项目(Foundation): 国家重点研发计划资助项目(2017YFC0210600);; 河钢集团唐钢公司产学研项目
作者(Author):
王斌;李玉然;刘连继;陈鹏;郭俊祥;林玉婷;朱廷钰;
WANG Bin;LI Yuran;LIU Lianji;CHEN Peng;GUO Junxiang;LIN Yuting;ZHU Tingyu;Beijing Engineering Research Center of Process Pollution Control,National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology,Institute of Process Engineering,Chinese Academy of Sciences;Tangshan Iron & Steel Group Co.,Ltd.;
Email:
DOI: 10.13226/j.issn.1006-6772.19120301
参考文献(References):
- [1]王升龙,王乃超.焦炉烟道气脱硝技术研究进展[J].广东化工,2019,46(11):146.WANG Shenglong,WANG Naichao.Research progress on denitrification technology of coke oven flue gas[J].Guangdong Chemical Industry,2019,46(11):146.
- [2]王岩,张飏,郭珊珊,等.焦炉烟气脱硫脱硝技术进展与建议[J].洁净煤技术,2017,23(6):1-6.WANG Yan,ZHANG Yang,GUO Shanshan,et al.Progress and suggestion on desulfurization and denitrification technology for coke oven flue gas[J].Clean Coal Technology,2017,23(6):1-6.
- [3]李立业,田京雷,黄世平.焦炉烟气SO2和NOx排放控制[J].燃料与化工,2017(2):4-6,11.LI Liye,TIAN Jinglei,HUANG Shiping.Emission control of SO2and NOxin coke oven flue gas[J].Fuel&Chemical Processes,2017(2):4-6,11.
- [4]杨锋,蒋廉颖,冯志军.焦炉烟气脱硫脱硝技术研究进展[J].山西化工,2019(1):53-54.YANG Feng,JIANG Lianying,FENG Zhijun.Research progress of coke oven flue gas desulfurization and denitrification technology[J].Shanxi Chemical Industry,2019(1):53-54.
- [5]尹华,吕文彬,孙刚森,等.焦炉烟道气净化技术与工艺探讨[J].燃料与化工,2015,46(2):1-4.YIN Hua,LYU Wenbin,SUN Gangsen,et al.Technology of coke oven flue gas purification and discussion on its process[J].Fuel&Chemical Processes,2015,46(2):1-4.
- [6]许红英,陈鹏,颜芳.焦炉烟气脱硫脱硝一体化技术的研究进展[J].燃料与化工,2019,50(4):1-3.XU Hongying,CHEN Peng,YAN Fang.Progress of research in an integrated De SOxand De NOxfrom coke oven waste gas[J].Fuel&Chemical Processes,2019,50(4):1-3
- [7]孙刚森,尹华,吕文彬,等.焦炉烟气脱硫除尘脱硝及其热解析一体化工艺[J].燃料与化工,2015,46(6):40-41,46.SUN Gangsen,YIN Hua,LYU Wenbin,et al.Integrated process for desulfurization,deducting,denitration and thermal decompositioin of coke oven flue gas[J].Fuel&Chemical Processes,2015,46(6):40-41,46.
- [8]张庆文,常治,铁刘莉,等.SDS干法脱硫及SCR中低温脱硝技术在焦炉烟气处理中的应用[J].化工装备技术,2019,40(4):14-18.ZHANG Qingwen,CHANG Zhi,TIE Liuli,et al.Application of SDSdry desulfurization and SCR medium and low temperature denitration technology in coke oven flue gas treatment[J].Chemical Equipment Technology,2019,40(4):14-18.
- [9]孙刚森,高飞.基于宝钢湛江焦炉烟道废气净化工程之实施论焦炉烟气污染物净化治理方案[C]//2015年(第九届)焦化节能环保及干熄焦技术研讨会论文集.安阳:中国金属学会炼焦化学分会,2015:153-156.SUN Gangsen,GAO Fei.Based on the implementation of the flue gas purification project of Zhanjiang coke oven in Baosteel[C]//2015(9th) Symposium on Coking Energy Conservation,Environmental Protection and CDQ Technology.Anyang:Coking Chemistry Branch of the Chinese Society for Metals,2015:153-156.
- [10]张化强,高庆华,李学志,等.安钢6 m焦炉活性炭烟气脱硫脱硝一体化技术实践[J].河南冶金,2018,26(5):32-33.ZHANG Huaqiang,GAO Qinghua,LI Xuezhi,et al.The application of removingthe SO2and NOxin exhaust gas with the activated carbon at 6 m coke oven in Angang[J].Henan Metallurgy,2018,26(5):32-33.
- [11]王宁.活性焦联合脱硫脱硝技术在焦炉烟气治理中的应用[J].新疆钢铁,2019(1):9-11.WANG Ni.Application of activated coke combined desulfurization and denitrification technology in coke oven flue gas treatment[J].Xinjiang Iron and Steel,2019(1):9-11.
- [12]李东亮,李震.河钢邯钢2×360 m2烧结机解析塔工艺优化[J].河北冶金,2019(S1):125-127.LI Dongliang,LI Zhen.Process optimization of analytic tower of 2×360 m2sintering machine in HBIS Hansteel[J].Hebei Metallurgy,2019(S1):125-127.
- [13]LI Y,LIN Y,WANG B,et al.Carbon consumption of activated coke in the thermal regeneration process for flue gas desulfurization and denitrification[J].Journal of Cleaner Production,2019,228:1391-1400.
- [14]BOYANO A,GLVEZ ME,MOLINER R,et al.Carbon-based catalytic briquettes for the reduction of NO:Effect of H2SO4,and HNO3,carbon support treatment[J].Fuel,2008,87 (10/11):2058-2068.
- [15]LIN Y,LI Y,XU Z,et al.Transformation of functional groups in the reduction of NO with NH3,over nitrogen-enriched activated carbons[J].Fuel,2018,223:312-323.
文章评论(Comment):
|
||||||||||||||||||
|
- 活性炭
- 脱硫脱硝
- 焦炉烟气
- 多污染物协同控制
activated carbon - desulfurization and denitrification
- coke oven flue gas
- multi-pollutant collaborative control
- 王斌
- 李玉然
- 刘连继
- 陈鹏
- 郭俊祥
- 林玉婷
- 朱廷钰
WANG Bin- LI Yuran
- LIU Lianji
- CHEN Peng
- GUO Junxiang
- LIN Yuting
- ZHU Tingyu
- Beijing Engineering Research Center of Process Pollution Control
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology
- Institute of Process Engineering
- Chinese Academy of Sciences
- Tangshan Iron & Steel Group Co.
- Ltd.
- 王斌
- 李玉然
- 刘连继
- 陈鹏
- 郭俊祥
- 林玉婷
- 朱廷钰
WANG Bin- LI Yuran
- LIU Lianji
- CHEN Peng
- GUO Junxiang
- LIN Yuting
- ZHU Tingyu
- Beijing Engineering Research Center of Process Pollution Control
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology
- Institute of Process Engineering
- Chinese Academy of Sciences
- Tangshan Iron & Steel Group Co.
- Ltd.