α-Fe_2O_3表面SO_2吸附及SO_3催化生成的密度泛函分析DFT study on the adsorption of SO_2 and catalytic formation of SO_3 on the α-Fe_2O_3 surface
王永兵;戴高峰;单志亮;王学斌;尤红军;谭厚章;
WANG Yongbing;DAI Gaofeng;SHAN Zhiliang;WANG Xuebin;YOU Hongjun;TAN Houzhang;Xinjiang Uygur Autonomous Region Special Equipment Inspection and Research Institute;School of Energy and Power Engineering,Xi'an Jiaotong University;
摘要(Abstract):
燃煤电厂排放了大量SO_2和少量SO_3,SO_3的产生不仅危害环境,且不利于电厂的安全运行,飞灰和锅炉壁面中的Fe_2O_3对SO_3生成有显著催化作用,而目前对Fe_2O_3催化生成SO_3的路径研究和机理揭示还不够深入。建立了α-Fe_2O_3(001)表面,利用密度泛函分析方法,对SO_2和O_2在α-Fe_2O_3(001)表面的吸附方式进行研究,得到SO_2的稳定吸附构型和O_2在Fe_2O_3表面的解离方式,利用过渡态搜索方法研究了α-Fe_2O_3表面催化生成SO_3的反应路径和反应能垒,并对比了气相反应生成SO_3的反应能垒。结果表明,SO_2最稳定的吸附方式是SO_2中的O原子和S原子吸附在α-Fe_2O_3晶体上的Fe原子上方,S原子不易在α-Fe_2O_3表面的晶格氧上方吸附;O_2在α-Fe_2O_3表面的吸附能大于SO_2的最大吸附能,表明O_2更易在α-Fe_2O_3表面吸附;O_2极易在表面有氧空位的Fe_2O_3晶体上发生解离并生成O原子,说明有氧空位存在的α-Fe_2O_3更易促进O_2的解离和表面吸附氧的产生。SO_3生成的L-H机理为气相中的SO_2和O原子先在α-Fe_2O_3表面吸附,再结合生成SO_3,该过程的反应能垒为231.65 k J/mol;E-R机理为气相中的SO_2与α-Fe_2O_3的表面吸附氧发生反应生成SO_3,其反应能垒为24.82 k J/mol,小于L-H机理的反应能垒,也远小于气相反应中SO_3生成的反应能垒。证实Fe_2O_3对SO_3的生成具有显著的催化作用,且E-R机理为主导的反应机理,氧空位的存在促进了O_2在α-Fe_2O_3表面的解离,且表面吸附氧在催化过程中起关键作用。
A large amount of SO_2 and a small amount of SO_3 are emitted from coal-fired power plants.The generation of SO_3 is not only harmful to the environment,but also dangerous to the safe operation of the power plant.Current studies show that Fe_2O_3 contained in the fly ash and the boiler wall have a significant catalytic effect on the SO_3formation.However,the research on the path and mechanism of SO_3catalytic formation by Fe_2O_3 is not deep enough.In this paper,theα-Fe_2O_3(001) surface was established firstly,and the adsorption configuration of SO_2and O_2onα-Fe_2O_3(001) surface was studied by density functional theory(DFT).The stable adsorption configuration of SO_2 and the dissociation pathway of O_2on Fe_2O_3(001) surface were obtained.The reaction path and energy barrier of catalytic formation of SO_3 onα-Fe_2O_3 surface were studied by using transition state search method.Then the energy barrier of catalytic formation of SO_3 in gas phase reaction were compared.The results show that the most stable adsorption configuration of SO_2 is that O and S atom in SO_2 are adsorbed above Fe atoms onα-Fe_2O_3,while S atom is not easy to be adsorbed above lattice oxygen ofα-Fe_2O_3 crystal.The adsorption energy of O_2 onα-Fe_2O_3 surface is greater than the maximum adsorption energy of SO_2,which means that O_2 is more easily adsorbed onα-Fe_2O_3 surface.In addition,O_2 is easy to dissociate and form O atom on the defect Fe_2O_3 surface with oxygen vacancy,which indicates thatα-Fe_2O_3 with oxygen vacancy is easier to promote the dissociation of O_2 and the generation of adsorbed oxygen on the surface.The L-H mechanism of SO_3 formation is that SO_2 and O atoms in the gas phase are adsorbed firstly on theα-Fe_2O_3 surface,and then combine to form SO_3,and the reaction energy barrier is 231.65 kJ/mol.The E-R mechanism is that SO_2in the gas phase reacts with adsorbed oxygen onα-Fe_2O_3surface to form SO_3while the reaction energy barrier is 24.82 k J/mol,which is less than that of L-H mechanism and far less than that of SO_3formation in gas phase reaction.The above results confirm that Fe_2O_3has a significant catalytic effect on the formation of SO_3,and the E-R mechanism is the dominant reaction mechanism.The existence of oxygen vacancy promotes the dissociation of O_2on the surface ofα-Fe_2O_3,and the surface adsorbed oxygen plays an important role in the catalytic process.
关键词(KeyWords):
Fe_2O_3;SO_2吸附;SO_3;密度泛函;催化
Fe_2O_3;SO_2 adsorption;SO_3;density functional theory;catalytic reaction
基金项目(Foundation): 新疆维吾尔族自治区自然科学基金面上资助项目(2017D01A69);; 新疆维吾尔族自治区自然科学基金青年基金资助项目(2017D01B41)
作者(Author):
王永兵;戴高峰;单志亮;王学斌;尤红军;谭厚章;
WANG Yongbing;DAI Gaofeng;SHAN Zhiliang;WANG Xuebin;YOU Hongjun;TAN Houzhang;Xinjiang Uygur Autonomous Region Special Equipment Inspection and Research Institute;School of Energy and Power Engineering,Xi'an Jiaotong University;
Email:
DOI: 10.13226/j.issn.1006-6772.19122101
参考文献(References):
- [1]刘宇,单广波,闫松,等.燃煤锅炉烟气中SO3的生成、危害及控制技术研究进展[J].环境工程,2016,34(12):93-97.LIU Yu,SHAN Guangbo,YAN Song,et al.Progress in research on formation,harm and control of SO3in flue gas of coal-fired boiler[J].Environmental Engineering,2016,34(12):93-97.
- [2]SRIVASTAVA R K,MILLER C A,ERICKSON C,et al.Emissions of sulfur trioxide from coal-fired power plants[J].Air Repair,2016,54(6):750-762.
- [3]SPRL Reinhold,MAIER J9rg,BELO Lawrence,et al.Mercury and SO3emissions in oxy-fuel combustion[J].Energy Procedia,2014,63:386-402.
- [4]GLARBORG P,KUBEL Dorte,DAM-JOHANSEN Kim,et al.Impact of SO2and NO on CO oxidation under post-flame conditions[J].Chemical Kinetics,1996,28:773-790.
- [5]SARBASSOV Yerbol,DUAN Lunbo,MANOVIC Vasilije,et al.Sulfur trioxide formation/emissions in coal-fired air-and oxy-fuel combustion processes:A review[J].Green House Gases:Science and Technology,2018,8:393-420.
- [6]BELO Lawrence P,ELLIOTT Liza K,STANGER Rohan J,et al.High-temperature conversin of SO2to SO3:Homogeneous experiments and catalytic effect of fly ash from air and oxy-fuel firing[J].Energy&Fuels,2014,28(11):7243-7251.
- [7]JRGENSEN Tommy L,LIVBJERG Hans,GLARBORG Peter.Homogeneous and heterogeneously catalyzed oxidation of SO2[J].Chemical Engineering Science,2007,62(16):4496-4499.
- [8]WANG Xuebin,ZHANG Jiaye,WANG Zhao,et al.Experimental and kinetics study on SO3catalytic formation by Fe2O3in oxy-combustion[J].Journal of Environmental Management,2019,236:420-427.
- [9]XIAO Haiping,CHENG Qiyong,LI Jian,et al.Enhanced effects of ash and slag on SO3formation in the post-flame region[J].Environmental Science and Pollution Research,2019,25:1-9.
- [10]MARIER P,DIBBS H P.The catalytic conversion of SO2to SO3by fly ash and the capture of SO2and SO3by Ca O and Mg O[J].Thermochimica Acta,1974,8(1):155-165.
- [11]KIM Keu Hong,CHOI Jae Shi.Kinetics and mechanism of the oxidation of sulfur dioxide on alpha-Fe2O3[J].The Journal of Physical Chemistry,1981,85(17):2447-2450.
- [12]肖海平,董琳,宁翔.Fe2O3对SO2氧化的异相催化作用[J].中国电机工程学报,2016,36(21):5866-5872,6030.XIAO Haiping,DONG Lin,NING Xiang.Heterogeneous catalytic mechanism of SO2oxidation with Fe2O3[J].Proceedings of the CSEE,2016,36(21):5866-5572,6030.
- [13]JONES R O.Density functional theory:Its origins,rise to prominence,and future[J].Reviews of Modern Physics,2015,87(3):897-923.
- [14]EID Kh M,AMMAR H Y.Adsorption of SO2on Li atoms deposited on Mg O(100) surface:DFT calculations[J].Applied Surface Science,2011,257(14):6049-6058.
- [15]RAD Ali Shokuhi,SHABESTARI Sahand Sadeghi,MOHSENI Soheil,et al.Study on the adsorption properties of O3,SO2,and SO3on B-doped graphene using DFT calculations[J].Journal of Solid State Chemistry,2005,237:204-210.
- [16]CASARIN Maurizio,FERRIGATO Francesca,MACCATO Chiara,et al.SO2on Ti O2(110) and Ti2O3(102) nonpolar surfaces:ADFT study[J].The Journal of Physical Chemistry B,2005,109(25):12596-12602.
- [17]THEVUTHASAN S,KIM Y J,YI S I,et al.Surface structure of MBE-grownα-Fe2O3(0001) by intermediate-energy X-ray photoelectron diffraction[J].Surface Science,1999,425(2/3):276-286.
- [18]李继红,林常枫,覃吴,等.理想与还原Fe2O3[001]表面上汞吸附协同催化CO分解作用[J].物理化学学报,2016,32(11):2717-2723.LI Jihong,LIN Changfeng,QIN Wu,et al.Synergetic effect of mercury adsorption on the catalytic decomposition of CO over perfect and reduced Fe2O3[001]Surface[J].Acta Physico-Chimica Sinica,2016,32(11):2717-2723.
- [19]THEVUTHASAN S,KIM Y J,YI S I,et al.Surface structure of MBE-grownα-Fe2O3(001) by intermediate-energy X-ray photoelectron diffraction[J].Surface Science,1999,425 (2):276-286.
- [20]LIU Ting,XUE Lucheng,GUO Xin,et al.DFT and experimental study on the mechanism of elemental mercury capture in the presence of HCl onα-Fe2O3(001)[J].Environmental Science&Technology,2016,50(9):4863-4868.
- [21]GALLOWAY Benjamin D,SASMAZ Erdem,PADAK Bihter.Binding of SO3to fly ash components:Ca O,Mg O,Na2O and K2O[J].Fuel,2015,145:79-83.
- [22]KIVELSON,DANIEL.The Determination of the potential constants of SO2from centrifugal distortion effects[J].Journal of Chemical Physics,2005,22(5):904.
- [23]FU Hongbo,WANG Xiao,WU Hongbo,et al.Heterogeneous uptake and oxidation of SO2on iron oxides[J].The Journal of Physical Chemistry C,2007,111(16):6077-6085.
- [24]SHUTTLEWORTH I G.Bond length effects during the dissociation of O2on Ni (111)[J].Applied Surface Science,2015,346:329-334.
- [25]XI Lin.Chemistry of sulfur oxides on transition metals.III.Oxidation of SO2and self-diffusion of O,SO2,and SO3on Pt (111)[J].Jphyschemb,2004,108(35):13329-13340.
文章评论(Comment):
|
||||||||||||||||||
|
- 王永兵
- 戴高峰
- 单志亮
- 王学斌
- 尤红军
- 谭厚章
WANG Yongbing- DAI Gaofeng
- SHAN Zhiliang
- WANG Xuebin
- YOU Hongjun
- TAN Houzhang
- Xinjiang Uygur Autonomous Region Special Equipment Inspection and Research Institute
- School of Energy and Power Engineering
- Xi'an Jiaotong University
- 王永兵
- 戴高峰
- 单志亮
- 王学斌
- 尤红军
- 谭厚章
WANG Yongbing- DAI Gaofeng
- SHAN Zhiliang
- WANG Xuebin
- YOU Hongjun
- TAN Houzhang
- Xinjiang Uygur Autonomous Region Special Equipment Inspection and Research Institute
- School of Energy and Power Engineering
- Xi'an Jiaotong University