煤直接液化残渣热解气体析出规律研究Precipitated rule of gas from direct liquefaction residue pyrolysis
常松;初茉;曹文瀚;王博;
CHANG Song;CHU Mo;CAO Wenhan;WANG Bo;China University of Mining and Technology ( Beijing) ,School of Chemical and Environmental Engineering;
摘要(Abstract):
为实现煤直接液化残渣的清洁、高效利用,利用管式炉进行液化残渣的热解实验,研究了残渣热解气体析出产率、速率及气体组成随温度的变化规律。结果表明:400℃前,气体析出量较少,全程共析出气体143.6 L,残渣热解气平均产率为0.2393 L/g,析出速率呈"两段式"分布,500550℃和700550℃和700750℃出现两个极值,分别为1.86、1.89 L/min。气体组成中H2含量较高,450750℃出现两个极值,分别为1.86、1.89 L/min。气体组成中H2含量较高,450900℃平均体积分数高达65%,分别在500℃出现极大值66.4%和800℃出现最大值70.2%;H2析出特点与气体产率相似,呈"两段式"分布。CH4在600℃出现最高值23.8%,C m H n在500℃出现最高值7.7%,CO在900℃出现极大值9.0%,CO2在残渣热解气中含量较少,分别在500℃出现极大值1.15%和800℃出现极大值1.24%。
To achieve clean and effective use of direct liquefaction residue,conduct the pyrolysis experiment on fixed-bed tubular furnace. Investigate gas yield,precipitation rate and the change rule with temperature. The results show that,when the temperature is below400 ℃,the average yield of gas is 0. 2393 L / g,the total gas yield are 143. 6 L. The precipitation rate shows a " two section" peculiarity,there are two extreme value at the temperature range of 500 ℃ to 550 ℃ and 700 ℃ to 750 ℃,which is 1. 86 L / min and 1. 89 L / min respectively. When the temperature is below 450 ℃,the H2in gas is little,while its average content reach up to 65 percent between 450 ℃and 900 ℃. The extreme value is 66. 4 percent at 500 ℃ and the maximum value is 70. 2 percent at 800 ℃. Its precipitation rate is similar to the average yield of gas. The maximum value of CH4appears at 600 ℃,which is 23. 8 percent,and the maximum value of C m H n appears at 600 ℃,which is 7. 7 percent. There is a little CO under 750 ℃,the maximum value of CO appears at 900 ℃,which is 9. 0 percent.There is a little CO2in the gas,there are two extreme value at 500 ℃ and 800 ℃,which is 1. 15 percent and 1. 24 percent respectively.
关键词(KeyWords):
液化残渣;热解;产气规律;气体组成;固定床;管式炉
liquefaction residue;pyrolysis;precipitation rate;gas composition;fixed-bed;pyrolysis;tubular furnace
基金项目(Foundation): 国家自然科学基金资助项目(U1261101)
作者(Authors):
常松;初茉;曹文瀚;王博;
CHANG Song;CHU Mo;CAO Wenhan;WANG Bo;China University of Mining and Technology ( Beijing) ,School of Chemical and Environmental Engineering;
DOI: 10.13226/j.issn.1006-6772.2014.02.022
参考文献(References):
- [1]张玉卓.神华集团大型煤炭直接液化项目的进展[J].中国煤炭,2002,28(5):8-9.
- [2]舒歌平,史士东,李克健.煤炭液化技术[M].北京:煤炭工业出版社,2003.
- [3]崔洪,杨建丽,刘振宇,等.煤直接液化残渣的性质与气化制氢[J].煤炭转化,2001,24(1):15-20.
- [4]崔洪,杨建丽,刘振宇.煤液化残焦基本性质及气化活性的考察研究[J].燃料化学学报,1999,27(S1):15-19.
- [5]高晋生,张德祥.煤液化技术[M].北京:化学工业出版社,2005:301-304.
- [6]Li Jun,Yang Jianli,Liu Zhenyu.Hydro-treatment of a direct coal liquefaction residue and its components[J].Catalysis Today,2008,130(2/4):389-394.
- [7]Li Jun,Yang Jianli,Liu Zhenyu.Hydrogenation of heavy liquids from a direct coal liquefaction residue for improved oil yield[J].Fuel Processing Technology,2009,90(4):490-495.
- [8]Simell P A,Lepplahti J K,Bredenberg J B.Catalytic purification of tarry fuel gas with carbonate rocks and ferrous materials[J].Fuel,1992,71(2):211-218.
- [9]Calkins W H,Tyler R J.Coal flash pyrolysis:2.Polymethylene compounds in low temperature flash pyrolysis Tars[J].Fuel,1984,63(8):1119-1124.
- [10]郭树才.煤化工工艺学[M].3版.北京:化学工业出版社,2012.
- [11]Peter R Solomon,David G Hamblen,Robert M Carangelo,et al.Models of tar formation during coal devolatilization[J].Combustion and Flame,1988,71(2):137-146.
- [12]朱学栋,朱子彬,唐黎华,等.煤的热解研究Ⅰ:气氛和温度对热解的影响[J].华东理工大学学报,1998,24(1):37-41.
- [13]朱学栋,朱子彬,唐黎华,等.煤的热解研究Ⅱ:煤化程度对氢气氛下热解的影响[J].华东理工大学学报,1998,24(3):262-266.
- [14]戴中蜀,郑昀辉.低煤化度煤经低温热解后各基团变化的研究[J].煤炭转化,1997,20(1):54-58.
- [15]范芸珠.煤直接液化残渣性质及应用的探索性与研究[D].上海:华东理工大学,2011:5-10.
文章评论(Comment):
|
||||||||||||||||||
|
- 液化残渣
- 热解
- 产气规律
- 气体组成
- 固定床
- 管式炉
liquefaction residue - pyrolysis
- precipitation rate
- gas composition
- fixed-bed
- pyrolysis
- tubular furnace
- 常松
- 初茉
- 曹文瀚
- 王博
CHANG Song- CHU Mo
- CAO Wenhan
- WANG Bo
- China University of Mining and Technology ( Beijing)
- School of Chemical and Environmental Engineering
- 常松
- 初茉
- 曹文瀚
- 王博
CHANG Song- CHU Mo
- CAO Wenhan
- WANG Bo
- China University of Mining and Technology ( Beijing)
- School of Chemical and Environmental Engineering