350 MW循环流化床锅炉屏式受热面汽温偏差研究Study on steam temperature deviation of platen heating surface in a 350 MW circulating fluidized bed boiler
张鹏;贺建平;王虎;谷威;辛胜伟;徐怀德;曹培庆;胡昌华;杜佳军;顾从阳;
ZHANG Peng;HE Jianping;WANG Hu;GU Wei;XIN Shengwei;XU Huaide;CAO Peiqing;HU Changhua;DU Jiajun;GU Congyang;CHN Energy CFB Technology R&D Center;Shenhua Shendong Electric Power Shanxi Hequ Power Generation Co.,Ltd.;
摘要(Abstract):
随着循环流化床(CFB)锅炉容量及蒸汽参数的大幅提升,锅炉高温受热面材料已达到现有最高水平,实际运行中高温受热面管屏汽温偏差特性直接关乎机组的安全可靠性。为准确获得超(超)临界CFB锅炉屏式高温受热面管屏的汽温偏差特性,在一台350 MW超临界CFB锅炉上开展了实炉测量试验,通过在锅炉2种类型的屏式高温受热面管屏上加装全屏壁温监测点,获得了满负荷工况下屏式高温受热面同屏管间汽温偏差及其分布均匀性,在实炉试验的基础上针对性地进行设备改造。结果表明:炉内屏式高温受热面客观上存在同屏管间汽温偏差,汽温偏差最大值可达60℃以上;屏式高温受热面近壁侧和向火侧敷设耐磨耐火材料的管屏管壁温度明显低于中央区域,相比于屏式高温过热器,屏式高温再热器汽温偏差最大值增加了约40℃;传统的屏式高温受热面间隔布置的壁温监测点已无法准确获得同屏管间最高壁温值,屏式高温再热器布置的壁温监测点代表性不足的问题更突出,需根据屏宽、屏高进行布置位置优化,尤其是在屏式高温受热面向火侧的管屏(向火侧最外侧管子向内第4~17根管)上布置更多壁温监测点;通过分屏设计、耐磨耐火材料敷设高度优化等措施,可有效控制屏式高温受热面汽温偏差及分布均匀性,优化后屏式高温过热器全屏汽温偏差最大值为24℃(其中近壁侧分屏汽温偏差最大值为16℃),汽温偏差的标准差为6.2℃,而屏式高温再热器全屏汽温偏差最大值为50℃(其中近壁侧分屏汽温偏差最大值为21℃),汽温偏差标准差为14.5℃。
With the boiler capacity and steam parameters of circulating fluidized bed( CFB) greatly improved,material of high-temperature heating surface of the boiler has reached the highest level. In the actual operation,the steam temperature deviation characteristics of the high temperature heating surface tube panel are directly related to the safety and reliability of the unit. To accurately obtain steam temperature deviation characteristics of platen heating surface in a supercritical or ultra-supercritical CFB boiler,real furnace experiments were carried out on a 350 MW supercritical CFB boiler. By installing wall temperature monitoring points on all panels of two types of hightemperature platen heating surface of the boiler,steam temperature deviation and its distribution uniformity among tube panels in the same high-temperature platen heating surface were obtained under full boiler load condition,then the corresponding equipment transformation was carried out on the basis of the field test. The results show that there is an objective deviation of steam temperature among tube panels in the same high-temperature platen heating surface inside the furnace,and maximum deviation of steam temperature can reach above 60℃ . Wall temperature of tube panels laid with resistant refractory at wall side and facing fire side are obviously lower than that in central area,and maximum wall temperature deviation of high-temperature platen reheater is about 40 ℃ higher than that of high-temperature platen superheater. Maximum wall temperature deviation can not be monitored accurately by the traditional wall temperature monitoring points arranged alternately on the platen heating surface,and issue of relative inadequacy of wall temperature monitoring points arranged on tube panels of high-temperature platen reheater is more prominent. It is necessary to optimize the layout position according to platen width and height,especially more wall temperature monitoring points are arranged on tube panel facing the fire side( number from 4 th to 17 th inward to the outermost tube at fire side). The steam temperature deviation and its distribution uniformity of the platen type high temperature heating surface can be effectively controlled by the measures of split platen design and the optimization of the laying height of resistant refractory material. After optimization,the maximum steam temperature deviation of high-temperature platen superheater is 24 ℃( the maximum value of split platen superheater at water wall side is 16 ℃),and the steam temperature standard deviation is 6.2 ℃ . While steam temperature deviation of high-temperature platen reheater is 50 ℃,( that of split platen reheater at water wall side is 21 ℃),and the steam temperature standard deviation is 14.5 ℃ .
关键词(KeyWords):
超(超)临界;循环流化床;屏式受热面;汽温偏差;实炉试验
ultra-supercritical;circulating fluidized bed;platen heating surface;steam temperature deviation;real furnace experiment
基金项目(Foundation): 国家重点研发计划资助项目(2016YFB0600201)
作者(Authors):
张鹏;贺建平;王虎;谷威;辛胜伟;徐怀德;曹培庆;胡昌华;杜佳军;顾从阳;
ZHANG Peng;HE Jianping;WANG Hu;GU Wei;XIN Shengwei;XU Huaide;CAO Peiqing;HU Changhua;DU Jiajun;GU Congyang;CHN Energy CFB Technology R&D Center;Shenhua Shendong Electric Power Shanxi Hequ Power Generation Co.,Ltd.;
DOI: 10.13226/j.issn.1006-6772.CFB20051901
参考文献(References):
- [1]岳光溪,吕俊复,徐鹏,等.循环流化床燃烧发展现状及前景分析[J].中国电力,2016,49(1):1-13.YUE Guangxi,LYU Junfu,XU Peng,et al. The up-to-date development and future of circulating fluidized bed combustion technology[J]. Electric Power,2016,49(1):1-13.
- [2]蔡润夏,吕俊复,凌文,等.超(超)临界循环流化床锅炉技术的发展[J].中国电力,2016,49(12):1-7.CAI Runxia,LYU Junfu,LING Wen,et al. Progress of supercritical and ultra-supercritical circulating fluidized bed boiler technology[J].Electric Power,2016,49(12):1-7.
- [3]凌文,吕俊复,周托,等.660 MW超超临界循环流化床锅炉研究开发进展[J].中国电机工程学报,2019,39(9):2515-2524.LING Wen,LYU Junfu,ZHOU Tuo,et al. Research and development progress of the 660 MW ultra-supercritical circulating fluidized bed boiler[J]. Proceedings of the CSEE,2019,39(9):2515-2524.
- [4]宋畅,吕俊复,杨海瑞,等.超临界及超超临界循环流化床锅炉技术研究与应用[J].中国电机工程学报,2018,38(2):338-347,663.SONG Chang,LYU Junfu,YANG Hairui,et al. Research and application of supercritical and ultra-supercritical circulating fluidized bed boiler technology[J]. Proceedings of the CSEE,2018,38(2):338-347,663.
- [5]孙献斌,黄中.大型循环流化床锅炉技术与工程应用[M]. 2版.北京:中国电力出版社,2013:116-120.SUN Xianbin,HUANG Zhong. Technology and engineering application of large-scale circulating fluidized bed boiler[M]. Version2. Beijing:China Electric Power Press,2013:116-120.
- [6]黄中.循环流化床锅炉优化改造技术[M].北京:中国电力出版社,2019:78-95.HUANG Zhong. Optimization technologies of circulating fluidized bed boiler[M]. Beijing:China Electric Power Press,2019:78-95.
- [7]胡昌华,卢啸风.超临界循环流化床锅炉设备与运行[M].北京:中国电力出版社,2009:253-270.HU Changhua,LU Xiaofeng. Equipment and operation of supercritical circulating fluidized bed boiler[M]. Beijing:China Electric Power Press,2009:253-270.
- [8] ZHANG R Q,YANG H R,HU N,et al. Experimental investigation and model validation of the heat flux profile in a 300 MW CFB boiler[J]. Power Technology,2013,246:31-40.
- [9] WANG Hu,HU Changhua,HE Jianpin,et al. Research on heat absorption characteristics of high temperature heating surfaces of supercritical CFB boilers[C]//Third International Conference on Energy Engineering and Environmental Protection. IOP Conference Series:Earth and Environmental Science,2019:1-6.
- [10]樊保国,祁海鹰,陈昌和,等.大型锅炉屏式过热器热力计算方法分析[J].锅炉技术,2000,31(12):1-3.FAN Baoguo,QI Haiying,CHEN Changhe,et al. Thermal calculation analysis of platen superheater in large capacity boiler[J].Boiler Technology,2000,31(12):1-3.
- [11]程竹静,管坚.300 MW循环流化床锅炉屏式过热器传热特性及壁温研究[J].节能技术,2013(31):413-416.CHENG Zhujing,GUAN Jian. Study on the heat transfer characteristic and wall temperature of platen superheater in a 300 MW CFB boiler[J]. Energy Conservation Technology,2013(31):413-416.
- [12]吴海波,张缦,孙运凯,等.300 MW循环流化床锅炉屏式受热面传热系数计算及其变化规律[J].动力工程学报,2012,32(8):586-590.WU Haibo,ZHANG Man,SUN Yunkai,et al. Calculation and variation of heat transfer coefficient of platen heating surfaces in a300 MW CFB boiler[J]. Journal of Chinese Society of Power Engineering,2012,32(8):586-590.
- [13]李燕,李文凯,吴玉新,等.循环流化床锅炉翼形墙受热面壁温特性分析[J].热能动力工程,2009,24(3):362-366.LI Yan,LI Wenkai,WU Yuxin,et al. Analysis of the heating-surface wall temperature characteristics of a CFB boiler wing wall[J]. Journal of Engineering for Thermal Energy and Power,2009,24(3):362-366.
- [14] MA Youfu,JIN Xin,LYU Junfu. Analysis of thermal deviations in L-shape platen superheaters of a supercritical 600 MW circulating fluidized bed boiler[J]. Applied Thermal Engineering,2020,166:1-9.
- [15]王孟浩,王衡,郑民牛.过热器再热器炉外壁温测点结构和报警温度设定值的探讨[J].热力发电,2006,35(7):29-32.WANG Menghao,WANG Heng,ZHENG Minniu. An approach to temperature measuring point structure on outer furnace wall of superheater and reheater as well as alarm temperature setting thereof[J]. Thermal Power Generation,2006,35(7):29-32.
文章评论(Comment):
|
||||||||||||||||||
|
- 超(超)临界
- 循环流化床
- 屏式受热面
- 汽温偏差
- 实炉试验
ultra-supercritical - circulating fluidized bed
- platen heating surface
- steam temperature deviation
- real furnace experiment
- 张鹏
- 贺建平
- 王虎
- 谷威
- 辛胜伟
- 徐怀德
- 曹培庆
- 胡昌华
- 杜佳军
- 顾从阳
ZHANG Peng- HE Jianping
- WANG Hu
- GU Wei
- XIN Shengwei
- XU Huaide
- CAO Peiqing
- HU Changhua
- DU Jiajun
- GU Congyang
- CHN Energy CFB Technology R&D Center
- Shenhua Shendong Electric Power Shanxi Hequ Power Generation Co.
- Ltd.
- 张鹏
- 贺建平
- 王虎
- 谷威
- 辛胜伟
- 徐怀德
- 曹培庆
- 胡昌华
- 杜佳军
- 顾从阳
ZHANG Peng- HE Jianping
- WANG Hu
- GU Wei
- XIN Shengwei
- XU Huaide
- CAO Peiqing
- HU Changhua
- DU Jiajun
- GU Congyang
- CHN Energy CFB Technology R&D Center
- Shenhua Shendong Electric Power Shanxi Hequ Power Generation Co.
- Ltd.