XJM-S28(3+2)型浮选机的设计与应用Design and application of special structure XJM-S type flotation machine
张鹏;
ZHANG Peng;Tangshan Branch,Tiandi Science & Technology Co. ,Ltd.;
摘要(Abstract):
针对选煤厂存在的原生细煤泥含量大,精煤灰分高、回收率低等问题,在借鉴XJM-S型浮选机结构的基础上,开发了一种带有中矿箱、阶梯形布置的XJM-S28(3+2)型浮选机。介绍了XJMS28(3+2)型浮选机的结构特点和工作原理,以开滦集团钱家营矿业分公司选煤厂为例,对比分析了两台设备不同工艺(粗选—精选和一次浮选)的工业应用情况。结果表明:两台浮选机入料灰分相近,采用精选工艺时,602/3浮选机精煤灰分为11.19%,可燃体回收率为67.47%;采用一次浮选时,602/2浮选机精煤灰分为12.65%,可燃体回收率为76.86%;两台浮选机综合浮选精煤灰分为12.35%,满足生产指标要求。精选工艺可有效排除高灰细泥,降低灰分,提高精煤产率。XJM-S28(3+2)型浮选机既能实现入浮煤泥的一次浮选,最大程度回收精煤,也能实现浮选精煤的二次浮选,降低精煤灰分,达到产品结构的优化。
The increasing native fine coal in coal preparation plant led to high ash content,low recovery. On the basis of XJM-S type flotation machine structure,the coal preparation plant develope a new XJM-S( 3 + 2) type flotation machine which has a mine box and is stair-steeping. Describe its structural characteristics and working principle. Taking Qianjiaying coal preparation plant as example,compare the industrial application of 602 /3 and 602 /2 XJM-S( 3 + 2) type flotation machine,which respectively adopt rougher-cleaner process and primary flotation. The results show that,with similar ash of feed coal,the ash of clean coal and combustible of 602 /3 is 11. 19 percent and67. 47 percent,while that of 602 /2 is 12. 65 percent and 76. 86 percent. The comprehensive ash of clean coal is 12. 35 percent. The first process can resolve the existing problems of coal preparation plant. XJM-S( 3 + 2) type flotation machine can realize primary flotation and secondary flotation.
关键词(KeyWords):
浮选机;中矿箱;粗选;精选;精煤灰分;可燃体回收率
flotation machine;mine box;roughing;cleaning;ash of clean coal;combustible recovery
基金项目(Foundation): 天地科技股份有限公司技术创新基金资助项目(TZ-JJ-09-TS-1)
作者(Authors):
张鹏;
ZHANG Peng;Tangshan Branch,Tiandi Science & Technology Co. ,Ltd.;
DOI: 10.13226/j.issn.1006-6772.2014.02.004
参考文献(References):
- [1]马剑.我国煤炭洗选加工现状及“十二五”发展构想[J].煤炭加工与综合利用,2011(4):1-5.
- [2]刘文欣.中国选煤工业现状和未来的发展趋势[J].煤炭工程,2010(11):16-18.
- [3]徐博,徐岩,于刚.煤泥浮选技术与实践[M].北京:化学工业出版社,2006.
- [4]任建民,刘磊,樊合高.赵固二矿选煤厂煤泥水处理系统的优化改造[J].洁净煤技术,2012,18(3):10-12.
- [5]吴大为.浮游选煤技术[M].徐州:中国矿业大学出版社,2004.
- [6]孙刚,王凤其,刘焕胜.不同粒径煤泥浮选的动力学模型[J].矿山机械,2012,40(9):95-98.
- [7]张红喜,董宪姝,王志忠.超声电化学强化细粒煤浮选脱硫的试验研究[J].金属矿山,2008(6):67-68,104.
- [8]Luttrell G H.细粒煤浮选的流体动力学和数学模型[J].国外金属矿选矿,1990(1):42-48.
- [9]任怀良.难浮细粒煤浮选技术研究[J].煤炭科学技术,2011,39(5):103-107.
- [10]陶有俊.细粒煤浮选数学模型的研究[J].中国矿业大学学报,1999,28(5):425-428.
- [11]张鹏.XJX-T16型浮选机改造实践[J].洁净煤技术,2012,18(5):13-15,34.
- [12]史英祥.XJM-S28大型浮选机的工业应用[J].选煤技术,2011(1):23-27.
- [13]程宏志.XJM-S28型浮选机开发与应用[J].煤炭科学技术,2013,41(9):185-187.
- [14]张鹏.XJM-(K)S系列浮选机在选煤厂的应用[J].选煤技术,2009(6):23-26.
- [15]石焕.应用XJM-S浮选机技术对老式浮选机的改造实践[J].选煤技术,2003(6):82-84.
- [16]王燕明,杜振宝.高灰细泥对煤泥水处理系统的影响[J].洁净煤技术,2012,18(5):28-30,41.
- [17]刘艳萍.赵各庄矿选煤厂技术改造实践[J].洁净煤技术,2012,18(1):16-18.
文章评论(Comment):
|
||||||||||||||||||
|